Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Mar;85(5):1498–1502. doi: 10.1073/pnas.85.5.1498

Electron spin resonance of charge carriers in chlorophyll a/water micelles

M K Bowman 1, T J Michalski 1, R L Tyson 1,*, D L Worcester 1,, J J Katz 1
PMCID: PMC279799  PMID: 16593913

Abstract

Chlorophyll a/water micelles (P740) prepared in hydrocarbon media have been shown by small-angle neutron scattering to consist of hollow cylinders whose surface is formed of a monolayer of chlorophyll crosslinked by water. The micelles can be reversibly oxidized or reduced to generate highly mobile holes or electrons that undergo rapid, one-dimensional transport along the chains of chlorophyll macrocycles comprising the surface of the micelles. Large π-π overlap within the chains facilitates the one-dimensional charge transport and is expected to do the same for energy transport. Structural defects in the micelle surface act as boundaries for charge transport, confining the spins to one-dimensional domains of approximately 200 macrocycles. The one-dimensional transport within the limited domains results in motionally narrowed electron spin resonance lines with some residual inhomogeneous broadening. Although the chlorophyll a incorporated in micelles is more easily oxidized than is monomeric chlorophyll a, it is much more resistant to chemical alteration.

Keywords: oxidized chlorophyll, one-dimensional conductor, electron transfer

Full text

PDF
1498

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. JACOBS E. E., VATTER A. E., HOLT A. S. Crystalline chlorophyll and bacteriochlorophyll. Arch Biochem Biophys. 1954 Nov;53(1):228–238. doi: 10.1016/0003-9861(54)90248-9. [DOI] [PubMed] [Google Scholar]
  2. Katz J. J., Ballschmiter K., Garcia-Morin M., Strain H. H., Uphaus R. A. Electron paramagnetic resonance of chlorophyll-water aggregates. Proc Natl Acad Sci U S A. 1968 May;60(1):100–107. doi: 10.1073/pnas.60.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Norris J. R., Uphaus R. A., Crespi H. L., Katz J. J. Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci U S A. 1971 Mar;68(3):625–628. doi: 10.1073/pnas.68.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Worcester D. L., Michalski T. J., Katz J. J. Small-angle neutron scattering studies of chlorophyll micelles: Models for bacterial antenna chlorophyll. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3791–3795. doi: 10.1073/pnas.83.11.3791. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES