Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2009 Oct 5;54(1):573–577. doi: 10.1128/AAC.01099-09

Phenotypic and Genotypic Characterization of Enterobacteriaceae with Decreased Susceptibility to Carbapenems: Results from Large Hospital-Based Surveillance Studies in China

Qiwen Yang 1, Hui Wang 1,*, Hongli Sun 1, Hongbin Chen 1, Yingchun Xu 1, Minjun Chen 1
PMCID: PMC2798477  PMID: 19805565

Abstract

The resistance mechanism of 49 Enterobacteriaceae isolates with decreased susceptibility to carbapenems collected from 2004 to 2008 at 16 teaching hospitals in China was investigated. Moderate- to high-level carbapenem resistance in most isolates was more closely associated with loss or decreased expression of both major porins combined with production of AmpC or extended-spectrum β-lactamase enzymes, while KPC-2, IMP-4, and IMP-8 carbapenemase production may lead to a low to moderate level of carbapenem resistance in Enterobacteriaceae in China.


To date, the emergence of carbapenem-resistant Enterobacteriaceae has been reported in some countries (7, 9, 16, 19). Carbapenemases and porin loss combined with AmpC enzyme hyperproduction are regarded as the main mechanisms of resistance (7, 9, 12, 19). In China, there have been some reports of KPC-2-producing carbapenem-resistant Klebsiella pneumoniae, Serratia marcescens, and Escherichia coli in the city of Hangzhou (2, 17, 20). However, a nationwide survey has not been performed. In this study, 49 Enterobacteriaceae isolates with decreased susceptibility to carbapenems (MIC of imipenem, meropenem, or ertapenem of ≥2 μg/ml) were collected from 16 teaching hospitals in a nationwide distribution, which included 26 K. pneumoniae, 8 E. coli, 10 Enterobacter cloacae, 2 Enterobacter aerogenes, and 3 Citrobacter freundii isolates. Identification of organisms was confirmed by using the API 20E or Vitek2 Compact system (bioMérieux, France). Susceptibility testing was performed by using the agar dilution method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) (3, 4). Breakpoints for tigecycline were as defined by the FDA (susceptible, ≤2 μg/ml; resistant, ≥8 μg/ml). Forty-nine isolates were nonsusceptible to most antibiotics except to tigecycline (to which 45 of 49 isolates were susceptible) and polymyxin B (to which 47 of 49 isolates were susceptible).

Conjugation experiments were carried out in mixed broth cultures, as described previously (2). Plasmid DNAs of all carbapenemase-producing isolates were obtained with a QIAfilter midikit (Qiagen, Hilden, Germany). Resistance genes were successfully transferred from 23 of 49 isolates to the recipient E. coli C600. Among the 16 carbapenemase-producing clinical isolates, carbapenemase genes of 13 isolates were successfully transferred to E. coli C600, except for three IMP-4-producing E. cloacae isolates. The 13 carbapenemase-producing transconjugants showed 8- to 64-fold increases in the MIC of imipenem, 32- to 512-fold increases in the MIC of meropenem, and 256- to 4,096-fold increases in the MIC of ertapenem relative to those of the recipient. Most of the carbapenemase-producing transconjugants harbored a single plasmid, while only one transconjugant (GZ64T) harbored four different plasmids (Table 1).

TABLE 1.

Susceptibilities and resistance mechanisms of carbapenemase-producing isolates and their transconjugants

Isolate no.a Species Siteb MIC (μg/ml) of drugc
Plasmid size(s) (kb) Resistance mechanism(s) Integron
IPM MEM ETP FOX TZP CTX CAZ FEP CIP AMK TGC POL
ZJ18 K. pneumoniae ZJ1 16 8 16 >256 >256 128 64 16 >32 >256 1 0.5 147, 6.4, 4.1, 3.4 KPC-2, SHV-28, DHA-1, ompK35 loss
ZJ18T 2 1 2 128 64 8 16 4 1 >256 0.06 0.25 147 KPC-2, DHA-1
ZJ70 K. pneumoniae ZJ2 >256 256 >256 128 >256 >256 64 >256 16 >256 0.25 0.5 42, 5.2, 2.5 KPC-2, SHV-11, CTX-M-14, ompK35/36 loss dfrA12-orfF-aadA2
ZJ70T 16 8 16 32 >256 64 32 32 0.13 1 0.13 0.25 42 KPC-2
ZJ71 K. pneumoniae ZJ2 16 16 16 16 >256 256 32 128 16 >256 0.13 1 42, 5.2, 2.5 KPC-2, TEM-1, SHV-11, CTX-M-14, ompK35 loss dfrA12-orfF-aadA2
ZJ71T 8 4 4 32 >256 16 32 16 0.25 1 0.13 0.5 42 KPC-2
ZJ99 K. pneumoniae ZJ1 16 4 8 32 >256 128 64 32 >32 0.5 1 1 90 KPC-2, CTX-M-3, qnrS1, ompK35 DEd
ZJ99T 16 16 8 32 >256 256 128 64 2 2 0.25 0.25 90 KPC-2, CTX-M-3, qnrS1
ZJ86 E. coli ZJ1 8 8 32 64 256 64 32 32 >32 1 0.25 0.5 120, 23, 7.1, 6.4, 5.9, 5.3, 3.9, 2.9, 2.3, 1.0 KPC-2, TEM-1, ompC loss dfrA17-aadA5
ZJ86T 8 8 16 64 >256 32 32 16 0.25 32 0.25 0.5 120 KPC-2
ZJ87 E. coli ZJ1 8 8 16 64 256 64 32 32 >32 1 0.25 0.5 120, 23, 7.1, 5.9, 5.3, 3.9, 2.9, 2.3, 1.0 KPC-2, TEM-1, ompC loss dfrA17-aadA5
ZJ87T 8 8 16 64 >256 32 32 16 0.25 1 0.25 0.25 120 KPC-2
FZ47 K. pneumoniae FZ 8 2 8 >256 64 256 >256 128 4 >256 1 1 190, 110, 80 IMP-8, TEM-1, SHV-11, CTX-M-14, qnrB2, aac(6′)-Ib, ompK35/36 loss dfrA12-orfF-aadA2
FZ47T 4 1 4 >256 8 128 >256 64 1 >256 0.06 0.25 190 IMP-8, TEM-1, CTX-M-14, qnrB2, aac(6′)-Ib dfrA12-orfF-aadA2
FZ49 K. pneumoniae FZ 8 2 4 >256 128 >256 >256 256 0.5 >256 0.5 1 190, 110, 80 IMP-8, TEM-1, SHV-11, CTX-M-14, qnrB2, aac(6′)-Ib, ompK35/36 loss dfrA12-orfF-aadA2
FZ49T 4 1 4 >256 8 128 >256 32 1 >256 0.06 0.25 190 IMP-8, TEM-1, CTX-M-14, qnrB2, aac(6′)-Ib dfrA12-orfF-aadA2
GZ64 K. pneumoniae GZ1 16 8 32 >256 >256 256 >256 128 2 1 0.5 0.5 140, 49, 11, 5.9, 3 IMP-4, ompK35/36 loss IMP-4-orfII
GZ64T 2 2 4 256 8 128 256 16 0.25 1 0.06 0.5 140, 49, 11, 5.9 IMP-4 IMP-4-orfII
WH76 K. pneumoniae WH 2 4 2 >256 16 128 256 32 0.5 1 0.5 1 57 IMP-4, TEM-1, SHV-14, CTX-M-3, qnrS1
WH76T 4 8 2 >256 32 256 >256 64 2 1 0.06 0.5 57 IMP-4, TEM-1, CTX-M-3, qnrS1
WH77 K. pneumoniae WH 2 4 4 >256 32 256 256 32 0.5 1 0.5 1 57 IMP-4, TEM-1, SHV-14, CTX-M-3, qnrS1
WH77T 4 4 4 >256 32 256 >256 64 2 1 0.06 0.5 57 IMP-4, TEM-1, CTX-M-3, qnrS1
SZ62 C. freundii SZ 4 4 4 >256 256 256 >256 64 32 >256 1 0.5 48, 33, 5.5, 5.4, 4.2, 3.3, 2.8, 1.7, 1.2 IMP-4, TEM-1, CMY-2, qnrS1, aac(6′)-Ib-cr
SZ62T 4 4 4 >256 32 128 >256 32 4 1 0.13 0.25 48 IMP-4, qnrS1
SZ63 C. freundii SZ 4 4 4 >256 >256 >256 >256 128 32 >256 1 0.5 171, 48, 33, 6.8, 5.5, 5.4, 4.2, 3.3, 2.8, 1.7, 1.2 IMP-4, qnrS1 dfrA12-orfF-aadA2
SZ63T 4 4 4 >256 32 256 >256 64 2 >256 0.13 0.5 171, 48 IMP-4, qnrS1 dfrA12-orfF-aadA2
SZ92 E. cloacae SZ 8 8 32 >256 128 >256 >256 128 >32 1 1 0.5 55, 7, 5.9, 5.5, 4.9, 2.5, 1.1 IMP-4, TEM-1, CTX-M-14, DHA-1, qnrB10/B4-like, aac(6′)-Ib, ompC loss orfx-aac6′-II, aadA1
RJ94 E. cloacae RJ 8 8 32 >256 256 >256 >256 256 4 0.5 1 0.5 98, 48 IMP-4, TEM-1, CTX-M-3, ompC loss PSE-1
WH103 E. cloacae WH 8 8 32 >256 >256 >256 >256 >256 32 1 1 0.5 118, 51 IMP-4, TEM-1, CTX-M-3, qnrS1, ompC loss dfrA12-aadA2
C600 E. coli 0.25 0.03 0.008 16 1 0.13 0.5 0.06 0.25 1 0.06 0.5
a

E. coli C600 was the recipient; T at the end of the isolate number indicates the transconjugant.

b

FZ, The Affiliated Union Hospital of Fujian Medical University; GZ1, The First Affiliated Hospital of Zhongshan University; RJ, The Affiliated Ruijin Hospital of Shanghai Jiaotong University; SZ, Shenzhen People's Hospital; WH, The Affiliated Tongji Hospital of Huazhong University of Science and Technology; ZJ1, The First Affiliated Hospital of Zhejiang University; ZJ2, The Second Affiliated Hospital of Zhejiang University.

c

IPM, imipenem; MEM, meropenem; ETP, ertapenem; FOX, cefoxitin; TZP, piperacillin-tazobactam; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; CIP, ciprofloxacin; AMK, amikacin; TGC, tigecycline; POL, polymyxin B.

d

DE, decreased expression.

PCR of β-lactamase genes for the transconjugants and respective donors was carried in a PTC-200 PCR system (Bio-Rad). The primers used in this study were described previously (1, 5, 11, 12, 14, 18, 19). PCR products were purified with a QIAquick PCR purification kit (Qiagen) and were sequenced on an ABI PRISM 3730XL sequencer analyzer. Carbapenemase genes were detected in 16 of 49 clinical isolates, which involved the blaKPC-2 gene from four K. pneumoniae and two E. coli isolates, the blaIMP-4 gene from three K. pneumoniae, three E. cloacae, and two C. freundii isolates, and the blaIMP-8 gene from two K. pneumoniae isolates. Among 49 clinical isolates, 23 carried blaTEM-1, 21 carried blaSHV, and 26 carried blaCTX-M, while blaCTX-M-14 and blaCTX-M-3 were the predominant genotypes among CTX-M-producing isolates. Fourteen isolates carried blaDHA-1, and seven carried blaCMY-2. Other β-lactamase genes (blaNMC, blaSME, blaIMI, blaGES, blaVIM, blaSPM, blaSIM, blaGIM, and blaOXA) were not detected in any of the 49 isolates.

All 49 isolates and their transconjugants were screened for the qnr (qnrA, qnrB, and qnrS) genes by multiplex PCR (13) and for aac(6′)-Ib-cr by PCR and sequencing (10). Among 49 isolates, 14 carried qnr genes, and qnrS1 (9/14) and qnrB (5/14) were the predominant qnr genotypes. Seventeen of 49 isolates carried an aac(6′)-Ib gene, and 9 of them were determined to be aac(6′)-Ib-cr.

Class 1 integrons were detected in the 49 clinical isolates and corresponding transconjugants by PCR and sequencing (8). Nine different structures of class 1 integrons were found in these isolates (Tables 1 and 2). The most common gene cassettes contained resistance determinants to aminoglycosides (aadA5, aadA2, and aadA1) and trimethoprim (dfrA17 and dfrA12). K. pneumoniae strain GZ64 gave a 2.2-kb PCR amplicon for class 1 integrons that contained blaIMP-4 and orfII (putative reverse transcriptase gene).

TABLE 2.

Susceptibilities and resistance mechanisms of non-carbapenemase-producing isolates with porin loss and their transconjugants

Isolate no.a Species MIC (μg/ml) of drugb
Resistance mechanism(s) Integron
IPM MEM ETP FOX TZP CTX CAZ FEP CIP AMK TGC POL
CY1 K. pneumoniae 32 16 32 >256 8 128 256 64 >32 >256 16 1 SHV-11, DHA-1, ompK35/36 loss dfrA12-orfF-aadA2
CY1T 0.25 0.016 0.008 64 2 4 64 1 2 >256 1 0.25 SHV-11, DHA-1 dfrA12-orfF-aadA2
PU3 K. pneumoniae 32 16 64 >256 >256 128 128 64 >32 16 0.25 0.5 DHA-1, aac(6′)-Ib-cr, ompK35/36 loss
PU4 K. pneumoniae 16 4 32 >256 8 16 64 0.5 >32 >256 4 0.5 SHV-1, DHA-1, ompK35/36 loss
PU5 K. pneumoniae 16 8 64 >256 256 >256 256 256 >32 >256 0.5 1 SHV-12, DHA-1, aac(6′)-Ib-cr, ompK35/36 loss
PU8 K. pneumoniae 16 8 32 >256 128 128 256 4 >32 8 1 1 SHV-11, DHA-1, aac(6′)-Ib-cr, ompK35/36 loss
SZ61 K. pneumoniae 16 8 64 >256 >256 128 256 16 >32 >256 4 0.5 TEM-1, SHV-1a, CMY-2, ompK35/36 loss
GZ66 K. pneumoniae 32 4 64 >256 >256 128 >256 32 >32 >256 0.5 0.5 SHV-11, DHA-1, ompK35/36 loss aadA2
GZ66T 0.5 0.032 0.008 128 1 16 128 1 1 >256 0.125 0.25 SHV-11, DHA-1
SX67 K. pneumoniae 4 2 32 >256 >256 >256 >256 256 >32 >256 0.5 1 SHV-2, CTX-M-14, DHA-1, qnrB6/S1, aac(6′)-Ib-cr, ompK35/36 loss
CY75 K. pneumoniae 32 8 64 >256 >256 >256 256 2 >32 2 1 1 SHV-11, DHA-1, ompK35/36 loss
XJ81 K. pneumoniae 8 2 64 >256 >256 >256 >256 256 1 16 0.5 0.5 TEM-1, SHV-12, DHA-1, aac(6′)-Ib, ompK35/36 loss dfrA12-orfF-aadA2
XJ81T 0.25 0.016 0.008 16 2 4 64 0.5 0.125 16 0.064 0.25 TEM-1, SHV-12, aac(6′)-Ib
PU105 K. pneumoniae 32 16 128 >256 >256 >256 >256 128 >32 >256 2 32 TEM-1, SHV-12, CTX-M-14, DHA-1, qnrB10/B4-like, aac(6′)-Ib-cr, ompK35/36 loss
ZJ68 K. pneumoniae 4 8 64 32 >256 >256 256 >256 4 >256 0.125 1 CTX-M-15, ompK35/36 loss dfrA12-orfF-aadA2
ZJ68T 0.5 0.032 0.064 16 32 >256 256 128 0.125 >256 0.064 0.5 CTX-M-15 dfrA12-orfF-aadA2
ZJ69 K. pneumoniae 32 4 32 >256 16 64 128 8 32 >256 0.5 1 SHV-28, ompK35/36 loss
GZ83 K. pneumoniae 32 8 128 >256 >256 >256 >256 32 >32 >256 0.5 1 SHV-11, CTX-M-14, ompK35/36 loss aadA2
PU104 K. pneumoniae 2 8 64 256 >256 >256 >256 >256 4 0.5 0.5 0.5 TEM-1, SHV-11, CTX-M-15, qnrS1, ompK35/36 loss
PU104T 0.25 0.032 0.016 256 4 256 64 32 0.25 2 0.25 0.25 TEM-1, CTX-M-15
PU60 E. coli 32 8 64 >256 256 256 256 16 >32 32 0.125 0.5 TEM-1, CMY-2, ompC/F loss dfrA17-aadA5
PU60T 0.5 0.032 0.064 128 4 16 64 0.5 0.25 1 0.125 0.25 CMY-2
PU96 E. coli 32 8 128 >256 >256 >256 >256 64 >32 2 1 0.5 TEM-1, CTX-M-14, CMY-2, ompC/F loss
PU101 E. coli 32 16 128 >256 >256 >256 >256 64 >64 4 0.064 0.5 TEM-1, CTX-M-14, CMY-2, ompC loss, ompF DEc
PU101T 0.25 0.032 0.25 >256 32 128 >256 1 0.25 1 0.25 0.25 CMY-2
PU102 E. coli 16 8 64 >256 >256 >256 64 >256 >64 64 0.25 0.5 TEM-1, CTX-M-14, CMY-2, aac(6′)-Ib, ompC DEc, ompF loss dfrA17-aadA5
PU102T 0.25 0.032 0.25 >256 >256 256 64 64 0.25 1 0.25 0.25 TEM-1, CTX-M-14, CMY-2
GX24 E. cloacae 4 2 16 >256 >256 256 >256 1 8 >256 1 2 TEM-1, DHA-1, aac(6′)-Ib, ompC loss, ompF DEc dfrA12-orfF-aadA2c
PU41 E. aerogenes 32 8 64 >256 128 >256 64 256 8 >256 1 0.5 CTX-M-14, DHA-1, qnrS1, ompC DEc, ompF loss
PU41T 0.5 0.032 0.032 256 1 128 64 16 2 >256 0.064 0.25 CTX-M-14, DHA-1, qnrS1
PU43 E. coli 8 16 32 128 256 >256 32 >256 >32 8 0.25 0.5 TEM-1, CTX-M-14, aac(6′)-Ib, ompC/F loss cmlA1 variant-like- aac(6′)-Ib
HX74 E. coli 4 8 16 64 >256 >256 256 >256 >32 8 0.064 0.5 TEM-1, CTX-M-14, CTX-M-3, aac(6′)-Ib-cr, ompC/F loss dfrA17-aadA5
HX74T 0.25 0.064 0.064 16 4 >256 256 256 0.25 2 0.125 0.25 CTX-M-3
GX56 E. cloacae 4 4 32 >256 >256 >256 256 >256 >32 >256 4 0.5 ompC loss, ompF DEc dfrA12-orfF-aadA2
WH85 E. aerogenes 8 8 16 256 >256 >256 32 >256 0.032 1 0.064 0.5 TEM-1, CTX-M-3, ompC/F loss
NJ88 E. cloacae 16 16 128 >256 128 >256 >256 >256 16 >256 0.5 0.5 CTX-M-14, ompC/F loss
NJ89 E. cloacae 16 16 128 >256 128 >256 >256 >256 16 >256 0.5 0.5 CTX-M-14, ompC/F loss
NJ90 E. cloacae 16 16 128 >256 128 >256 >256 >256 16 >256 0.5 0.5 CTX-M-14, ompC/F loss
NJ91 E. cloacae 16 16 128 >256 128 >256 >256 >256 16 >256 0.5 0.5 CTX-M-14, ompC/F loss
GZ84 K. pneumoniae 1 1 8 >256 >256 256 256 32 >32 16 0.5 0.5 SHV-11, aac(6′)-Ib-cr, ompK35 loss
WH97 K. pneumoniae 2 2 4 >256 32 128 >256 32 1 1 0.5 0.5 SHV-33, aac(6′)-Ib, ompK35 DE
RJ78 C. freundii 8 2 8 >256 >256 256 128 64 16 8 1 2 CMY-2, qnrA1, aac(6′)-Ib-cr, ompC loss
SZ93 E. cloacae 4 0.125 0.064 >256 2 1 0.5 0.125 0.064 1 1 >32 ompC loss
C600 E. coli 0.25 0.032 0.008 16 1 0.125 0.5 0.064 0.25 1 0.064 0.5
a

E. coli C600 was the recipient; T at the end of the isolate number indicates the transconjugant.

b

IPM, imipenem; MEM, meropenem; ETP, ertapenem; FOX, cefoxitin; TZP, piperacillin-tazobactam; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; CIP, ciprofloxacin; AMK, amikacin; TGC, tigecycline; POL, polymyxin B.

c

DE, decreased expression.

Pulsed-field gel electrophoresis (PFGE) typing was performed as described previously (15), and it showed that K. pneumoniae ZJ70 and ZJ71 (from Hangzhou), E. coli ZJ86 and ZJ87 (from Hangzhou), and C. freundii SZ62 and SZ63 (from Shenzhen) were clonally related.

Outer membrane proteins (OMPs) were isolated by sarcosyl extraction of total membrane preparations as described previously (6). Expression levels of the two corresponding major porins (OmpK35 and OmpK36 for K. pneumoniae and OmpF and OmpC for E. coli, E. cloacae, E. aerogenes, and C. freundii) were investigated. Thirty-three of 49 isolates, including 19 K. pneumoniae and 14 other Enterobacteriaceae, lost or had lower expression of both major porins, while 12 isolates lost or had lower expression of one porin. Expression of both major porin proteins was normal in only four isolates. Isolates with a combination of carbapenemase and porin loss showed relatively high carbapenem MICs (K. pneumoniae strains ZJ70 and ZJ71). Among the 33 non-carbapenemase-producing isolates, 29 showed loss or lower expression of both major porins, and 28 produced extended-spectrum β-lactamases (ESBLs), AmpC, or both types of enzymes simultaneously (Tables 2 and 3). The MIC ranges of imipenem, meropenem, and ertapenem against these 28 isolates were 2 to 32 μg/ml (20 imipenem-resistant isolates with MICs of ≥16 μg/ml), 2 to 16 μg/ml (9 meropenem-resistant isolates with MICs of 16 μg/ml), and 16 to 128 μg/ml (all resistant to ertapenem), which is relatively higher than those of the isolates with single porin loss (Table 3).

TABLE 3.

Distribution and corresponding carbapenem MIC ranges for strains with different resistance determinants

Resistance determinant profile No. of isolates MIC (μg/ml) range
Imipenem Meropenem Ertapenem
IMP-4+, no porin loss or decreased expression 4 2-4 4 2-4
IMP-4+, single porin loss 3 8 8 32
IMP-4+, double porin loss 1 16 8 32
KPC-2+, single porin loss or decreased expression 5 8-16 4-16 8-32
KPC-2+, double porin loss 1 >256 256 >256
IMP-8+, double porin loss 2 8 2 4-8
Carbapenemase, ESBL+, AmpC, single porin loss or decreased expression 2 1-2 1-2 4-8
Carbapenemase, ESBL+, AmpC, double porin loss 11 2-32 4-16 16-128
Carbapenemase, ESBL, AmpC+, single porin loss 1 8 4 8
Carbapenemase, ESBL, AmpC+, double porin loss or decreased expression 5 4-32 2-16 16-64
Carbapenemase, ESBL+, AmpC+, double porin loss or decreased expression 12 4-32 2-16 32-128
Carbapenemase, ESBL, AmpC, single porin loss 1 4 0.125 0.064
Carbapenemase, ESBL, AmpC, double porin loss or decreased expression 1 4 4 32

In this study, 16 of 49 isolates produced KPC-2 or IMP-4/8 carbapenemases. K. pneumoniae was the most frequently isolated carbapenemase-producing species (9/16 isolates) and produced KPC-2, IMP-4, and IMP-8 carbapenemases. IMP-4 was the most common carbapenemase type in this study (8/16) and was found in K. pneumoniae, E. cloacae, and C. freundii. KPC-2 has emerged in China but was limited to certain areas, such as the city of Hangzhou. Importantly, this study showed that two-thirds of carbapenemase-nonsusceptible isolates (33/49) did not produce carbapenemases, and most of these isolates (28/33) had lost or had reduced expression of both major porin proteins (OmpK35/36 or OmpF/C), usually in combination with ESBL production (23/28; mainly CTX-M-14, SHV-11, and CTX-M-3) or AmpC (17/28; DHA-1 and CMY-2). This indicated that loss or decreased expression of both of the major porins may play an important part in an increased resistance level to carbapenems. AmpC or ESBL production may contribute to the resistance level among these isolates. These data suggest that the high prevalence rates of ESBLs and AmpC among Enterobacteriaceae may predispose these organisms to carbapenem resistance.

Nucleotide sequence accession numbers.

The sequences of the carbapenemase genes in this study were submitted to GenBank and assigned accession numbers EU368858 (blaIMP-4 harbored by K. pneumoniae), EU368857 (blaIMP-4 harbored by C. freundii), EU368856 (blaIMP-8 harbored by K. pneumoniae), and EU244644 (blaKPC-2 harbored by K. pneumoniae).

Acknowledgments

We thank Rong Zhang of the Second Affiliated Hospital of Zhejiang University, Minggui Wang of the Antibiotic Institute of Fudan University, and Yunsong Yu of the First Affiliated Hospital of Zhejiang University for the gifts of K. pneumoniae ATCC 13883, E. cloacae ATCC 13047, C. freundii ATCC 8090, E. coli V517, R1, and R27, and K. pneumoniae strain KP2 (carrying blaKPC-2).

Footnotes

Published ahead of print on 5 October 2009.

REFERENCES

  • 1.Armand-Lefèvre, L., V. Leflon-Guibout, J. Bredin, F. Barguellil, A. Amor, J. M. Pagès, and M. H. Nicolas-Chanoine. 2003. Imipenem resistance in Salmonella enterica serovar Wien related to porin loss and CMY-4 β-lactamase production. Antimicrob. Agents Chemother. 47:1165-1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Cai, J. C., H. W. Zhou, R. Zhang, and G. X. Chen. 2008. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob. Agents Chemother. 52:2014-2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 7th ed. Approved standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
  • 4.Clinical and Laboratory Standards Institute. 2008. Performance standards for antimicrobial susceptibility testing; 18th informational supplement. CLSI M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA.
  • 5.Giakkoupi, P., A. Tambic-Andrasevic, S. Vourli, J. Skrlin, S. Sestan-Crnek, L. S. Tzouvelekis, and A. C. Vatopoulos. 2006. Transferable DHA-1 cephalosporinase in Escherichia coli. Int. J. Antimicrob. Agents 27:77-80. [DOI] [PubMed] [Google Scholar]
  • 6.Hernández-Allés, S., S. Albertí, D. Alvarez, A. Doménech-Sánchez, L. Martínez-Martínez, J. Gil, J. M. Tomás, and V. J. Benedí. 1999. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology 145:673-679. [DOI] [PubMed] [Google Scholar]
  • 7.Kaczmarek, F. M., F. Dib-Hajj, W. Shang, and T. D. Gootz. 2006. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla (ACT-1) β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50:3396-3406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lévesque, C., L. Piché, C. Larose, and P. H. Roy. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39:185-191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Oteo, J., A. Delgado-Iribarren, D. Vega, V. Bautista, M. C. Rodríguez, M. Velasco, J. M. Saavedra, M. Pérez-Vázquez, S. García-Cobos, L. Martínez-Martínez, and J. Campos. 2008. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int. J. Antimicrob. Agents 32:534-537. [DOI] [PubMed] [Google Scholar]
  • 10.Park, C. H., A. Robicsek, G. A. Jacoby, D. Sahm, and D. C. Hooper. 2006. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50:3953-3955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Pérez-Pérez, F. J., and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40:2153-2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Queenan, A. M., and K. Bush. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20:440-458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Robicsek, A., J. Strahilevitz, D. F. Sahm, G. A. Jacoby, and D. C. Hooper. 2006. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother. 50:2872-2874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Shibata, N., Y. Doi, K. Yamane, T. Yagi, H. Kurokawa, K. Shibayama, H. Kato, K. Kai, and Y. Arakawa. 2003. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 4l:5407-5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233-2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Vatopoulos, A. 2008. High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece: a review of the current evidence. Euro Surveill. 13:1-6. [PubMed] [Google Scholar]
  • 17.Wei, Z. Q., X. X. Du, Y. S. Yu, P. Shen, Y. G. Chen, and L. J. Li. 2007. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob. Agents Chemother. 51:763-765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Woodford, N., M. J. Ellington, J. M. Coelho, J. F. Turton, M. E. Ward, S. Brown, S. G. Amyes, and D. M. Livermore. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 27:351-353. [DOI] [PubMed] [Google Scholar]
  • 19.Yigit, H., A. M. Queenan, G. J. Anderson, A. Domenech-Sanchez, J. W. Biddle, C. D. Steward, S. Alberti, K. Bush, and F. C. Tenover. 2001. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45:1151-1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Zhang, R., H. W. Zhou, J. C. Cai, and G. X. Chen. 2007. Plasmid-mediated carbapenem-hydrolysing β-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J. Antimicrob. Chemother. 59:574-576. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES