Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Mar;85(6):1978–1982. doi: 10.1073/pnas.85.6.1978

Early cross-striation formation in twitching Xenopus myocytes in culture.

Y Kidokoro 1, M Saito 1
PMCID: PMC279905  PMID: 3279423

Abstract

Spontaneous release of neurotransmitter has been demonstrated in various types of synapses. Its physiological significance, however, is still unknown. In nerve-muscle cultures of embryonic Xenopus laevis, we observed that acetylcholine, which is released spontaneously at the synaptic terminal, caused frequent twitches of muscle cells. These muscle cells developed cross-striations earlier than neighboring non-twitching cells. This effect of innervation was unaffected by tetrodotoxin but was blocked by alpha-bungarotoxin. Repeated iontophoretic application of acetylcholine or KCl to muscle cells caused twitches and also accelerated the formation of cross-striations. Thus twitching apparently promotes lateral alignment of myofibrils. It is also known that myosin synthesis is higher in twitching muscle cells. Therefore, successfully innervated twitching muscle cells may have an advantage for faster differentiation over neighboring non-twitching muscle cells. We suggest that spontaneously released transmitter may serve as a mediator for trophic interaction at forming synapses.

Full text

PDF
1978

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Cohen M. W., Zorychta E. Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):731–756. doi: 10.1113/jphysiol.1977.sp011879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong D. L., Turin L., Warner A. E. Muscle activity and the loss of electrical coupling between striated muscle cells in Xenopus embryos. J Neurosci. 1983 Jul;3(7):1414–1421. doi: 10.1523/JNEUROSCI.03-07-01414.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandman E., Strohman R. C. Increased K+ inhibits spontaneous contractions reduces myosin accumulation in cultured chick myotubes. J Cell Biol. 1982 Jun;93(3):698–704. doi: 10.1083/jcb.93.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan S., Steinbach J. H. The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J Physiol. 1977 May;267(1):195–213. doi: 10.1113/jphysiol.1977.sp011808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackshaw S. E., Warner A. E. Low resistance junctions between mesoderm cells during development of trunk muscles. J Physiol. 1976 Feb;255(1):209–230. doi: 10.1113/jphysiol.1976.sp011276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burden S. Acetylcholine receptors at the neuromuscular junction: developmental change in receptor turnover. Dev Biol. 1977 Nov;61(1):79–85. doi: 10.1016/0012-1606(77)90343-8. [DOI] [PubMed] [Google Scholar]
  7. Chow I., Cohen M. W. Developmental changes in the distribution of acetylcholine receptors in the myotomes of Xenopus laevis. J Physiol. 1983 Jun;339:553–571. doi: 10.1113/jphysiol.1983.sp014733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen M. W., Greschner M., Tucci M. In vivo development of cholinesterase at a neuromuscular junction in the absence of motor activity in Xenopus laevis. J Physiol. 1984 Mar;348:57–66. doi: 10.1113/jphysiol.1984.sp015099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DIAMOND J., MILEDI R. A study of foetal and new-born rat muscle fibres. J Physiol. 1962 Aug;162:393–408. doi: 10.1113/jphysiol.1962.sp006941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danto S. I., Fischman D. A. Immunocytochemical analysis of intermediate filaments in embryonic heart cells with monoclonal antibodies to desmin. J Cell Biol. 1984 Jun;98(6):2179–2191. doi: 10.1083/jcb.98.6.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dennis M. J. Development of the neuromuscular junction: inductive interactions between cells. Annu Rev Neurosci. 1981;4:43–68. doi: 10.1146/annurev.ne.04.030181.000355. [DOI] [PubMed] [Google Scholar]
  12. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  13. Haydon P. G., McCobb D. P., Kater S. B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science. 1984 Nov 2;226(4674):561–564. doi: 10.1126/science.6093252. [DOI] [PubMed] [Google Scholar]
  14. Hume R. I., Role L. W., Fischbach G. D. Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature. 1983 Oct 13;305(5935):632–634. doi: 10.1038/305632a0. [DOI] [PubMed] [Google Scholar]
  15. Kidokoro Y., Anderson M. J., Gruener R. Changes in synaptic potential properties during acetylcholine receptor accumulation and neurospecific interactions in Xenopus nerve-muscle cell culture. Dev Biol. 1980 Aug;78(2):464–483. doi: 10.1016/0012-1606(80)90347-4. [DOI] [PubMed] [Google Scholar]
  16. Kidokoro Y. Two types of miniature endplate potentials in Xenopus nerve-muscle cultures. Neurosci Res. 1984 Jun;1(3):157–170. doi: 10.1016/s0168-0102(84)80013-9. [DOI] [PubMed] [Google Scholar]
  17. Kidokoro Y., Yeh E. Initial synaptic transmission at the growth cone in Xenopus nerve-muscle cultures. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6727–6731. doi: 10.1073/pnas.79.21.6727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klein I., Daood M., Whiteside T. Development of heart cells in culture: studies using an affinity purified antibody to a myosin light chain. J Cell Physiol. 1985 Jul;124(1):49–53. doi: 10.1002/jcp.1041240109. [DOI] [PubMed] [Google Scholar]
  19. Klier F. G., Schubert D., Heinemann S. The ultrastructural differentiation of the clonal myogenic cell line L6 in normal and high K+ medium. Dev Biol. 1977 Jun;57(2):440–449. doi: 10.1016/0012-1606(77)90228-7. [DOI] [PubMed] [Google Scholar]
  20. Kullberg R. W., Lentz T. L., Cohen M. W. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol. 1977 Oct 1;60(1):101–129. doi: 10.1016/0012-1606(77)90113-0. [DOI] [PubMed] [Google Scholar]
  21. Kuno M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol Rev. 1971 Oct;51(4):647–678. doi: 10.1152/physrev.1971.51.4.647. [DOI] [PubMed] [Google Scholar]
  22. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  23. McDermott P., Daood M., Klein I. Contraction regulates myosin synthesis and myosin content of cultured heart cells. Am J Physiol. 1985 Oct;249(4 Pt 2):H763–H769. doi: 10.1152/ajpheart.1985.249.4.H763. [DOI] [PubMed] [Google Scholar]
  24. Muntz L. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802). J Embryol Exp Morphol. 1975 Jun;33(3):757–774. [PubMed] [Google Scholar]
  25. Myers P. Z., Eisen J. S., Westerfield M. Development and axonal outgrowth of identified motoneurons in the zebrafish. J Neurosci. 1986 Aug;6(8):2278–2289. doi: 10.1523/JNEUROSCI.06-08-02278.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakajima Y., Kidokoro Y., Klier F. G. The development of functional neuromuscular junctions in vitro: an ultrastructural and physiological study. Dev Biol. 1980 Jun 1;77(1):52–72. doi: 10.1016/0012-1606(80)90456-x. [DOI] [PubMed] [Google Scholar]
  27. Peng H. B., Wolosewick J. J., Cheng P. C. The development of myofibrils in cultured muscle cells: a whole-mount and thin-section electron microscopic study. Dev Biol. 1981 Nov;88(1):121–136. doi: 10.1016/0012-1606(81)90224-4. [DOI] [PubMed] [Google Scholar]
  28. Tokuyasu K. T., Dutton A. H., Singer S. J. Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle. J Cell Biol. 1983 Jun;96(6):1727–1735. doi: 10.1083/jcb.96.6.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Young S. H., Poo M. M. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature. 1983 Oct 13;305(5935):634–637. doi: 10.1038/305634a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES