Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Mar;85(6):2003–2007. doi: 10.1073/pnas.85.6.2003

Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury.

J N Sanes 1, S Suner 1, J F Lando 1, J P Donoghue 1
PMCID: PMC279910  PMID: 3162322

Abstract

The potential for peripheral nerve injury to reorganize motor cortical representations was investigated in adult rats. Maps reflecting functional connections between the motor cortex and somatic musculature were generated with intracortical electrical stimulation techniques. Comparison of cortical somatotopic maps obtained in normal rats with maps generated from rats with a facial nerve lesion indicated that the forelimb and eye/eyelid representations expanded into the normal vibrissa area. Repeated testing from an electrode placed chronically in the motor cortex showed a shift from vibrissa to forelimb within hours after facial nerve transection. These comparatively quick changes in motor cortex representation pattern suggest that synaptic relations between motor cortex and somatic musculature are continually reshaped in adult mammals.

Full text

PDF
2003

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinzinger K., Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat. 1968;85(2):145–157. doi: 10.1007/BF00325030. [DOI] [PubMed] [Google Scholar]
  2. DeFelipe J., Conley M., Jones E. G. Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci. 1986 Dec;6(12):3749–3766. doi: 10.1523/JNEUROSCI.06-12-03749.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devor M., Wall P. D. Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord. J Comp Neurol. 1981 Jun 20;199(2):277–291. doi: 10.1002/cne.901990209. [DOI] [PubMed] [Google Scholar]
  4. Donoghue J. P., Sanes J. N. Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1123–1126. doi: 10.1073/pnas.84.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donoghue J. P., Wise S. P. The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol. 1982 Nov 20;212(1):76–88. doi: 10.1002/cne.902120106. [DOI] [PubMed] [Google Scholar]
  6. Dostrovsky J. O., Millar J., Wall P. D. The immediate shift of afferent drive to dorsal column nucleus cells following deafferentation: a comparison of acute and chronic deafferentation in gracile nucleus and spinal cord. Exp Neurol. 1976 Sep;52(3):480–495. doi: 10.1016/0014-4886(76)90219-3. [DOI] [PubMed] [Google Scholar]
  7. Endo K., Araki T., Yagi N. The distribution and pattern of axon branching of pyramidal tract cells. Brain Res. 1973 Jul 27;57(2):484–491. doi: 10.1016/0006-8993(73)90154-6. [DOI] [PubMed] [Google Scholar]
  8. Fetz E. E., Cheney P. D., German D. C. Corticomotoneuronal connections of precentral cells detected by postspike averages of EMG activity in behaving monkeys. Brain Res. 1976 Sep 24;114(3):505–510. doi: 10.1016/0006-8993(76)90973-2. [DOI] [PubMed] [Google Scholar]
  9. Futami T., Shinoda Y., Yokota J. Spinal axon collaterals of corticospinal neurons identified by intracellular injection of horseradish peroxidase. Brain Res. 1979 Mar 23;164:279–284. doi: 10.1016/0006-8993(79)90021-0. [DOI] [PubMed] [Google Scholar]
  10. Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  11. Humphrey D. R., Reed D. J. Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. Adv Neurol. 1983;39:347–372. [PubMed] [Google Scholar]
  12. Kaas J. H., Merzenich M. M., Killackey H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325–356. doi: 10.1146/annurev.ne.06.030183.001545. [DOI] [PubMed] [Google Scholar]
  13. Kelahan A. M., Ray R. H., Carson L. V., Massey C. E., Doetsch G. S. Functional reorganization of adult raccoon somatosensory cerebral cortex following neonatal digit amputation. Brain Res. 1981 Oct 26;223(1):152–159. doi: 10.1016/0006-8993(81)90815-5. [DOI] [PubMed] [Google Scholar]
  14. Lawrence D. G., Kuypers H. G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain. 1968 Mar;91(1):1–14. doi: 10.1093/brain/91.1.1. [DOI] [PubMed] [Google Scholar]
  15. Matthews D. A., Cotman C., Lynch G. An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II. Reappearance of morphologically normal synaptic contacts. Brain Res. 1976 Oct 8;115(1):23–41. doi: 10.1016/0006-8993(76)90820-9. [DOI] [PubMed] [Google Scholar]
  16. Merzenich M. M., Kaas J. H., Wall J. T., Sur M., Nelson R. J., Felleman D. J. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. 1983 Nov;10(3):639–665. doi: 10.1016/0306-4522(83)90208-7. [DOI] [PubMed] [Google Scholar]
  17. Merzenich M. M., Nelson R. J., Stryker M. P., Cynader M. S., Schoppmann A., Zook J. M. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984 Apr 20;224(4):591–605. doi: 10.1002/cne.902240408. [DOI] [PubMed] [Google Scholar]
  18. Neafsey E. J., Bold E. L., Haas G., Hurley-Gius K. M., Quirk G., Sievert C. F., Terreberry R. R. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. 1986 Mar;396(1):77–96. doi: 10.1016/s0006-8993(86)80191-3. [DOI] [PubMed] [Google Scholar]
  19. Nelson S. G., Collatos T. C., Niechaj A., Mendell L. M. Immediate increase in Ia-motoneuron synaptic transmission caudal to spinal cord transection. J Neurophysiol. 1979 May;42(3):655–664. doi: 10.1152/jn.1979.42.3.655. [DOI] [PubMed] [Google Scholar]
  20. Raisman G., Field P. M. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 1973 Feb 28;50(2):241–264. doi: 10.1016/0006-8993(73)90729-4. [DOI] [PubMed] [Google Scholar]
  21. Rasmusson D. D. Reorganization of raccoon somatosensory cortex following removal of the fifth digit. J Comp Neurol. 1982 Mar 10;205(4):313–326. doi: 10.1002/cne.902050402. [DOI] [PubMed] [Google Scholar]
  22. Sanderson K. J., Welker W., Shambes G. M. Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats. Brain Res. 1984 Feb 6;292(2):251–260. doi: 10.1016/0006-8993(84)90761-3. [DOI] [PubMed] [Google Scholar]
  23. Sanes J. N., Mauritz K. H., Dalakas M. C., Evarts E. V. Motor control in humans with large-fiber sensory neuropathy. Hum Neurobiol. 1985;4(2):101–114. [PubMed] [Google Scholar]
  24. Semba K., Egger M. D. The facial "motor" nerve of the rat: control of vibrissal movement and examination of motor and sensory components. J Comp Neurol. 1986 May 8;247(2):144–158. doi: 10.1002/cne.902470203. [DOI] [PubMed] [Google Scholar]
  25. Shinoda Y., Yamaguchi T., Futami T. Multiple axon collaterals of single corticospinal axons in the cat spinal cord. J Neurophysiol. 1986 Mar;55(3):425–448. doi: 10.1152/jn.1986.55.3.425. [DOI] [PubMed] [Google Scholar]
  26. Shinoda Y., Zarzecki P., Asanuma H. Spinal branching of pyramidal tract neurons in the monkey. Exp Brain Res. 1979 Jan 2;34(1):59–72. doi: 10.1007/BF00238341. [DOI] [PubMed] [Google Scholar]
  27. Stoney S. D., Jr, Thompson W. D., Asanuma H. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol. 1968 Sep;31(5):659–669. doi: 10.1152/jn.1968.31.5.659. [DOI] [PubMed] [Google Scholar]
  28. TWITCHELL T. E. The restoration of motor function following hemiplegia in man. Brain. 1951 Dec;74(4):443–480. doi: 10.1093/brain/74.4.443. [DOI] [PubMed] [Google Scholar]
  29. Tetzlaff W., Kreutzberg G. W. Enzyme changes in the rat facial nucleus following a conditioning lesion. Exp Neurol. 1984 Sep;85(3):547–564. doi: 10.1016/0014-4886(84)90030-x. [DOI] [PubMed] [Google Scholar]
  30. Thomander L. Reorganization of the facial motor nucleus after peripheral nerve regeneration. An HRP study in the rat. Acta Otolaryngol. 1984 May-Jun;97(5-6):619–626. doi: 10.3109/00016488409132939. [DOI] [PubMed] [Google Scholar]
  31. Tsukahara N., Fujito Y. Physiological evidence of formation of new synapses from cerebrum in the red nucleus neurons following cross-union of forelimb nerves. Brain Res. 1976 Apr 16;106(1):184–188. doi: 10.1016/0006-8993(76)90085-8. [DOI] [PubMed] [Google Scholar]
  32. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES