Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Apr;85(7):2403–2406. doi: 10.1073/pnas.85.7.2403

Enzymatically controlled drug delivery.

F Fischel-Ghodsian 1, L Brown 1, E Mathiowitz 1, D Brandenburg 1, R Langer 1
PMCID: PMC280001  PMID: 3281165

Abstract

An approach for providing feedback control for polypeptide drugs in a polymeric controlled-release system uses a trigger molecule and a polymer-bound enzyme that, in the presence of that trigger molecule, will cause an acid or a base to form. When the pH inside the polymer system changes, the solubility of the drug shifts dramatically, which changes the diffusion or dissolution driving force, and hence the release rate changes correspondingly. This concept was tested using a controlled-release system of ethylene/vinyl acetate copolymer containing insulin and immobilized glucose oxidase. The enzymatic reaction of glucose to gluconic acid reduces the pH in the polymer microenvironment. Since insulin solubility increases with decreasing pH (at physiologic pH, this is true for an insulin with an isoelectric point of 7.4 or higher), the release of insulin increases in response to glucose concentration. The feasibility of this concept has been shown using trilysyl insulin with an isoelectric point of 7.4. Multiple exposures to buffered glucose solutions over several weeks caused insulin release to reversibly increase during each exposure. Polymer-implanted diabetic rats infused with glucose solutions showed a significant increase in insulin concentration in 30 min-an effect not observed in three different sets of control rats.

Full text

PDF
2403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradbury A. F., Ko A. S., Massey D. E., Salokangas A., Smyth D. G., Sabey G. A., Webb F. W., Stewart G. A. The quest for a latent action insulin. Postgrad Med J. 1973 Dec;49(Suppl):945–948. [PubMed] [Google Scholar]
  2. Brown L. R., Wei C. L., Langer R. In vivo and in vitro release of macromolecules from polymeric drug delivery systems. J Pharm Sci. 1983 Oct;72(10):1181–1185. doi: 10.1002/jps.2600721019. [DOI] [PubMed] [Google Scholar]
  3. Brown L., Munoz C., Siemer L., Edelman E., Langer R. Controlled release of insulin from polymer matrices. Control of diabetes in rats. Diabetes. 1986 Jun;35(6):692–697. doi: 10.2337/diab.35.6.692. [DOI] [PubMed] [Google Scholar]
  4. Brownlee M., Cerami A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science. 1979 Dec 7;206(4423):1190–1191. doi: 10.1126/science.505005. [DOI] [PubMed] [Google Scholar]
  5. Chandrasekaran S. K., Paul D. R. Dissolution-controlled transport from dispersed matrixes. J Pharm Sci. 1982 Dec;71(12):1399–1402. doi: 10.1002/jps.2600711222. [DOI] [PubMed] [Google Scholar]
  6. Chu C. C. The effect of pH on the in vitro degradation of poly(glycolide lactide) copolymer absorbable sutures. J Biomed Mater Res. 1982 Mar;16(2):117–124. doi: 10.1002/jbm.820160204. [DOI] [PubMed] [Google Scholar]
  7. Desai S. J., Singh P., Simonelli A. P., Higuchi W. I. Investigation of factors influencing release of solid drug dispersed in inert matrices. II. Quantitation of procedures. J Pharm Sci. 1966 Nov;55(11):1224–1229. doi: 10.1002/jps.2600551112. [DOI] [PubMed] [Google Scholar]
  8. FOLKMAN J., LONG D. M. THE USE OF SILICONE RUBBER AS A CARRIER FOR PROLONGED DRUG THERAPY. J Surg Res. 1964 Mar;4:139–142. doi: 10.1016/s0022-4804(64)80040-8. [DOI] [PubMed] [Google Scholar]
  9. GIBSON Q. H., SWOBODA B. E., MASSEY V. KINETICS AND MECHANISM OF ACTION OF GLUCOSE OXIDASE. J Biol Chem. 1964 Nov;239:3927–3934. [PubMed] [Google Scholar]
  10. HALES C. N., RANDLE P. J. Immunoassay of insulin with insulin-antibody precipitate. Biochem J. 1963 Jul;88:137–146. doi: 10.1042/bj0880137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katchalski E., Silman I., Goldman R. Effect of the microenvironment on the mode of action of immobilized enzymes. Adv Enzymol Relat Areas Mol Biol. 1971;34:445–536. doi: 10.1002/9780470122792.ch7. [DOI] [PubMed] [Google Scholar]
  12. Kohn J., Wilchek M. A new approach (cyano-transfer) for cyanogen bromide activation of Sepharose at neutral pH, which yields activated resins, free of interfering nitrogen derivatives. Biochem Biophys Res Commun. 1982 Aug;107(3):878–884. doi: 10.1016/0006-291x(82)90604-0. [DOI] [PubMed] [Google Scholar]
  13. Kost J., Horbett T. A., Ratner B. D., Singh M. Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. J Biomed Mater Res. 1985 Nov-Dec;19(9):1117–1133. doi: 10.1002/jbm.820190920. [DOI] [PubMed] [Google Scholar]
  14. Langer R., Brem H., Tapper D. Biocompatibility of polymeric delivery systems for macromolecules. J Biomed Mater Res. 1981 Mar;15(2):267–277. doi: 10.1002/jbm.820150212. [DOI] [PubMed] [Google Scholar]
  15. Langer R., Brown L., Edelman E. Controlled release and magnetically modulated release systems for macromolecules. Methods Enzymol. 1985;112:399–422. doi: 10.1016/s0076-6879(85)12032-x. [DOI] [PubMed] [Google Scholar]
  16. Levy D., Carpenter F. H. The synthesis of triaminoacyl-insulins and the use of the t-butyloxycarbonyl group for the reversible blocking of the amino groups of insulin. Biochemistry. 1967 Nov;6(11):3559–3568. doi: 10.1021/bi00863a030. [DOI] [PubMed] [Google Scholar]
  17. Lim F., Sun A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980 Nov 21;210(4472):908–910. doi: 10.1126/science.6776628. [DOI] [PubMed] [Google Scholar]
  18. Peppas N. A. A model of dissolution-controlled solute release from porous drug delivery polymeric systems. J Biomed Mater Res. 1983 Nov;17(6):1079–1087. doi: 10.1002/jbm.820170615. [DOI] [PubMed] [Google Scholar]
  19. Rhine W. D., Hsieh D. S., Langer R. Polymers for sustained macromolecule release: procedures to fabricate reproducible delivery systems and control release kinetics. J Pharm Sci. 1980 May;69(3):265–270. doi: 10.1002/jps.2600690305. [DOI] [PubMed] [Google Scholar]
  20. Theeuwes F. Elementary osmotic pump. J Pharm Sci. 1975 Dec;64(12):1987–1991. doi: 10.1002/jps.2600641218. [DOI] [PubMed] [Google Scholar]
  21. WEEKS J. R., DAVIS J. D. CHRONIC INTRAVENOUS CANNULAS FOR RATS. J Appl Physiol. 1964 May;19:540–541. doi: 10.1152/jappl.1964.19.3.540. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES