Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Apr;85(8):2514–2517. doi: 10.1073/pnas.85.8.2514

N-methylation: potential mechanism for metabolic activation of carcinogenic primary arylamines.

D M Ziegler 1, S S Ansher 1, T Nagata 1, F F Kadlubar 1, W B Jakoby 1
PMCID: PMC280027  PMID: 3357879

Abstract

Two amine N-methyltransferases isolated from rabbit liver catalyze S-adenosylmethionine-dependent N-methylation of benzidine and 4-aminobiphenyl but not of 4-aminoazobenzene or 2-aminobiphenyl. The enzymatic reaction products were analyzed and found to be identical to synthetic N-methylbenzidine and N-methyl-4-aminobiphenyl. N-Methylation may be a critical step in the metabolic activation of primary arylamines because N-methylarylamines, unlike primary arylamines, are readily N-oxygenated by the NADPH- and oxygen-dependent microsomal flavin-containing monooxygenase. Kinetic studies carried out with the purified porcine liver monooxygenase demonstrate that, while activity with primary arylamines could not be detected, N-methyl derivatives of benzidine, 4-aminoazobenzene, and 4-aminobiphenyl are substrates. Products formed from N-methyl-4-aminobiphenyl had the properties of the hydroxylamine and/or nitrone in that the enzyme- and time-dependent incubation product(s) reduced Fe3+ to Fe2+, and formaldehyde was formed during the course of the reaction. These data suggest that N-methyl-4-aminobiphenyl is oxidized to N-hydroxy-N-methyl-4-aminobiphenyl, which can undergo further oxidation to a nitrone that hydrolyzes to formaldehyde and N-hydroxy-4-aminobiphenyl.

Full text

PDF
2514

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES