Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Apr;85(8):2753–2757. doi: 10.1073/pnas.85.8.2753

Homozygous and heterozygous deletions of the von Willebrand factor gene in patients and carriers of severe von Willebrand disease.

K Y Ngo 1, V T Glotz 1, J A Koziol 1, D C Lynch 1, J Gitschier 1, P Ranieri 1, N Ciavarella 1, Z M Ruggeri 1, T S Zimmerman 1
PMCID: PMC280077  PMID: 3258663

Abstract

Severe von Willebrand disease is characterized by undetectable or trace quantities of von Willebrand factor in plasma and tissue stores. We have studied the genomic DNA of 10 affected individuals from six families with this disorder using probes from the 5' and 3' ends of the vWF cDNA and with a probe extending from the 5' end into the central region. Southern blots of restriction endonuclease digests and gene dosage analysis measurements carried out with quantitative slot blots of undigested genomic DNA separated these patients into three groups. The first group consisted of a family with complete homozygous deletions of the vWF gene in the four probands. Gene dosage analysis was consistent with heterozygous deletions in both of the asymptomatic parents and four asymptomatic siblings of this kindred (P less than 0.01). The second group was comprised of a family in which there was a complete heterozygous deletion of the vWF gene in the proband and one asymptomatic parent, suggesting that a different type of genetic abnormality was inherited from the other parent. Thus, the patient appeared to be doubly heterozygous for interacting genetic abnormalities affecting vWF expression. In the third group, no gene deletions could be detected. Alloantibodies developed only in the kindred with homozygous deletions. These techniques should prove useful in identifying carriers of severe von Willebrand disease and also in defining patients predictably at risk of developing alloantibodies to vWF.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonthron D., Orr E. C., Mitsock L. M., Ginsburg D., Handin R. I., Orkin S. H. Nucleotide sequence of pre-pro-von Willebrand factor cDNA. Nucleic Acids Res. 1986 Sep 11;14(17):7125–7127. doi: 10.1093/nar/14.17.7125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collins C. J., Underdahl J. P., Levene R. B., Ravera C. P., Morin M. J., Dombalagian M. J., Ricca G., Livingston D. M., Lynch D. C. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4393–4397. doi: 10.1073/pnas.84.13.4393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fay P. J., Kawai Y., Wagner D. D., Ginsburg D., Bonthron D., Ohlsson-Wilhelm B. M., Chavin S. I., Abraham G. N., Handin R. I., Orkin S. H. Propolypeptide of von Willebrand factor circulates in blood and is identical to von Willebrand antigen II. Science. 1986 May 23;232(4753):995–998. doi: 10.1126/science.3486471. [DOI] [PubMed] [Google Scholar]
  5. Ginsburg D., Handin R. I., Bonthron D. T., Donlon T. A., Bruns G. A., Latt S. A., Orkin S. H. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science. 1985 Jun 21;228(4706):1401–1406. doi: 10.1126/science.3874428. [DOI] [PubMed] [Google Scholar]
  6. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kan Y. W., Dozy A. M. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5631–5635. doi: 10.1073/pnas.75.11.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lian E. C., Deykin D. In vivo dissociation of factor VII (AHF) activity and factor VII-related antigen in von Willebrand's disease. Am J Hematol. 1976;1(1):71–78. doi: 10.1002/ajh.2830010108. [DOI] [PubMed] [Google Scholar]
  9. Lynch D. C., Zimmerman T. S., Collins C. J., Brown M., Morin M. J., Ling E. H., Livingston D. M. Molecular cloning of cDNA for human von Willebrand factor: authentication by a new method. Cell. 1985 May;41(1):49–56. doi: 10.1016/0092-8674(85)90060-1. [DOI] [PubMed] [Google Scholar]
  10. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  11. Ngo K. Y., Vergnaud G., Johnsson C., Lucotte G., Weissenbach J. A DNA probe detecting multiple haplotypes of the human Y chromosome. Am J Hum Genet. 1986 Apr;38(4):407–418. [PMC free article] [PubMed] [Google Scholar]
  12. Rubin E. M., Kan Y. W. A simple sensitive prenatal test for hydrops fetalis caused by alpha-thalassaemia. Lancet. 1985 Jan 12;1(8420):75–77. doi: 10.1016/s0140-6736(85)91967-1. [DOI] [PubMed] [Google Scholar]
  13. Ruggeri Z. M., Mannucci P. M., Jeffcoate S. L., Ingram G. I. Immunoradiometric assay of factor VIII related antigen, with observations in 32 patients with von Willebrand's disease. Br J Haematol. 1976 Jun;33(2):221–232. doi: 10.1111/j.1365-2141.1976.tb03533.x. [DOI] [PubMed] [Google Scholar]
  14. Sadler J. E., Shelton-Inloes B. B., Sorace J. M., Harlan J. M., Titani K., Davie E. W. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6394–6398. doi: 10.1073/pnas.82.19.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shelton-Inloes B. B., Chehab F. F., Mannucci P. M., Federici A. B., Sadler J. E. Gene deletions correlate with the development of alloantibodies in von Willebrand disease. J Clin Invest. 1987 May;79(5):1459–1465. doi: 10.1172/JCI112974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shelton-Inloes B. B., Titani K., Sadler J. E. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry. 1986 Jun 3;25(11):3164–3171. doi: 10.1021/bi00359a014. [DOI] [PubMed] [Google Scholar]
  17. Titani K., Kumar S., Takio K., Ericsson L. H., Wade R. D., Ashida K., Walsh K. A., Chopek M. W., Sadler J. E., Fujikawa K. Amino acid sequence of human von Willebrand factor. Biochemistry. 1986 Jun 3;25(11):3171–3184. doi: 10.1021/bi00359a015. [DOI] [PubMed] [Google Scholar]
  18. Verweij C. L., Diergaarde P. J., Hart M., Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986 Aug;5(8):1839–1847. doi: 10.1002/j.1460-2075.1986.tb04435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Verweij C. L., de Vries C. J., Distel B., van Zonneveld A. J., van Kessel A. G., van Mourik J. A., Pannekoek H. Construction of cDNA coding for human von Willebrand factor using antibody probes for colony-screening and mapping of the chromosomal gene. Nucleic Acids Res. 1985 Jul 11;13(13):4699–4717. doi: 10.1093/nar/13.13.4699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES