Abstract
The cellular bases of learning are currently under active investigation by both experimental and theoretical means. In this paper, a simple neuronal wiring diagram is proposed that can reproduce both simple and higher-order behavioral paradigms seen in invertebrate classical conditioning experiments. Learning in this model does not take place by modification of synaptic strength values. Instead, the model uses a layer of interneurons with modifiable thresholds for spike initiation, as suggested by the plasticity mechanisms thought to operate in Hermissenda [Alkon, D. L. (1983) Sci. Am. 249, 70-84]. The model therefore has an advantage in plausibility compared with more standard models using Hebb synapses or their functional equivalents, which have not yet been demonstrated in any invertebrate organism.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkon D. L. Learning in a marine snail. Sci Am. 1983 Jul;249(1):70-4, 76-8, 80-4. doi: 10.1038/scientificamerican0783-70. [DOI] [PubMed] [Google Scholar]
- Carew T. J., Hawkins R. D., Kandel E. R. Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science. 1983 Jan 28;219(4583):397–400. doi: 10.1126/science.6681571. [DOI] [PubMed] [Google Scholar]
- Farley J., Alkon D. L. Cellular mechanisms of learning, memory, and information storage. Annu Rev Psychol. 1985;36:419–494. doi: 10.1146/annurev.ps.36.020185.002223. [DOI] [PubMed] [Google Scholar]
- Gluck M. A., Thompson R. F. Modeling the neural substrates of associative learning and memory: a computational approach. Psychol Rev. 1987 Apr;94(2):176–191. [PubMed] [Google Scholar]
- Hawkins R. D., Kandel E. R. Is there a cell-biological alphabet for simple forms of learning? Psychol Rev. 1984 Jul;91(3):375–391. [PubMed] [Google Scholar]
- Kelso S. R., Brown T. H. Differential conditioning of associative synaptic enhancement in hippocampal brain slices. Science. 1986 Apr 4;232(4746):85–87. doi: 10.1126/science.3952501. [DOI] [PubMed] [Google Scholar]
- Kelso S. R., Ganong A. H., Brown T. H. Hebbian synapses in hippocampus. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5326–5330. doi: 10.1073/pnas.83.14.5326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. W., Desmond J. E., Berthier N. E., Blazis D. E., Sutton R. S., Barto A. G. Simulation of the classically conditioned nictitating membrane response by a neuron-like adaptive element: response topography, neuronal firing, and interstimulus intervals. Behav Brain Res. 1986 Aug;21(2):143–154. doi: 10.1016/0166-4328(86)90092-6. [DOI] [PubMed] [Google Scholar]
- Mpitsos G. J., Cohan C. S. Discriminative behavior and Pavlovian conditioning in the mollusc Pleurobranchaea. J Neurobiol. 1986 Sep;17(5):469–486. doi: 10.1002/neu.480170509. [DOI] [PubMed] [Google Scholar]
- Sutton R. S., Barto A. G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev. 1981 Mar;88(2):135–170. [PubMed] [Google Scholar]
- Tesauro G. Simple neural models of classical conditioning. Biol Cybern. 1986;55(2-3):187–200. doi: 10.1007/BF00341933. [DOI] [PubMed] [Google Scholar]
- Viana Di Prisco G. Hebb synaptic plasticity. Prog Neurobiol. 1984;22(2):89–102. doi: 10.1016/0301-0082(84)90021-2. [DOI] [PubMed] [Google Scholar]
