Abstract
Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler R., Manthorpe M., Skaper S. D., Varon S. Polyornithine-attached neurite-promoting factors (PNPFs). Culture sources and responsive neurons. Brain Res. 1981 Feb 9;206(1):129–144. doi: 10.1016/0006-8993(81)90105-0. [DOI] [PubMed] [Google Scholar]
- Anglister L., Farber I. C., Shahar A., Grinvald A. Localization of voltage-sensitive calcium channels along developing neurites: their possible role in regulating neurite elongation. Dev Biol. 1982 Dec;94(2):351–365. doi: 10.1016/0012-1606(82)90353-0. [DOI] [PubMed] [Google Scholar]
- Barnes D. M. Neurosciences advance in basic and clinical realms. Science. 1986 Dec 12;234(4782):1324–1326. doi: 10.1126/science.2431480. [DOI] [PubMed] [Google Scholar]
- Berg D. K. New neuronal growth factors. Annu Rev Neurosci. 1984;7:149–170. doi: 10.1146/annurev.ne.07.030184.001053. [DOI] [PubMed] [Google Scholar]
- Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamlet J. H., Goller I., Burnstock G. Selective growth of sympathetic nerve fibers to explants of normally densely innervated autonomic effector organs in tissue culture. Dev Biol. 1973 Apr;31(2):362–379. doi: 10.1016/0012-1606(73)90272-8. [DOI] [PubMed] [Google Scholar]
- Cohan C. S., Kater S. B. Suppression of neurite elongation and growth cone motility by electrical activity. Science. 1986 Jun 27;232(4758):1638–1640. doi: 10.1126/science.3715470. [DOI] [PubMed] [Google Scholar]
- Coleman E. A., Thompson P. J., Cason G. J. The role of centralized computer services in faculty evaluation. Comput Nurs. 1986 Nov-Dec;4(6):259–264. [PubMed] [Google Scholar]
- Collins F. Neurite outgrowth induced by the substrate associated material from nonneuronal cells. Dev Biol. 1980 Sep;79(1):247–252. doi: 10.1016/0012-1606(80)90089-5. [DOI] [PubMed] [Google Scholar]
- Combes P. C., Privat A., Pessac B., Calothy G. Differentiation of chick embryo neuroretina cells in monolayer cultures. An ultrastructural study. I. Seven-day retina. Cell Tissue Res. 1977 Dec 13;185(2):159–173. doi: 10.1007/BF00220661. [DOI] [PubMed] [Google Scholar]
- Creese I., Sibley D. R., Hamblin M. W., Leff S. E. The classification of dopamine receptors: relationship to radioligand binding. Annu Rev Neurosci. 1983;6:43–71. doi: 10.1146/annurev.ne.06.030183.000355. [DOI] [PubMed] [Google Scholar]
- Curtis B. M., Catterall W. A. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2528–2532. doi: 10.1073/pnas.82.8.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels M. The role of microtubules in the growth and stabilization of nerve fibers. Ann N Y Acad Sci. 1975 Jun 30;253:535–544. doi: 10.1111/j.1749-6632.1975.tb19227.x. [DOI] [PubMed] [Google Scholar]
- De Mello F. G. The ontogeny of dopamine-dependent increase of adenosine 3',5'-cyclic monophosphate in the chick retina. J Neurochem. 1978 Oct;31(4):1049–1053. doi: 10.1111/j.1471-4159.1978.tb00146.x. [DOI] [PubMed] [Google Scholar]
- Dearry A., Burnside B. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors. J Neurochem. 1986 Apr;46(4):1006–1021. doi: 10.1111/j.1471-4159.1986.tb00612.x. [DOI] [PubMed] [Google Scholar]
- Feldman E. L., Axelrod D., Schwartz M., Heacock A. M., Agranoff B. W. Studies on the localization of newly added membrane in growing neurites. J Neurobiol. 1981 Nov;12(6):591–598. doi: 10.1002/neu.480120607. [DOI] [PubMed] [Google Scholar]
- Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinvald A., Farber I. C. Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam. Science. 1981 Jun 5;212(4499):1164–1167. doi: 10.1126/science.7233210. [DOI] [PubMed] [Google Scholar]
- Gundersen R. W., Barrett J. N. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol. 1980 Dec;87(3 Pt 1):546–554. doi: 10.1083/jcb.87.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammarback J. A., Palm S. L., Furcht L. T., Letourneau P. C. Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin. J Neurosci Res. 1985;13(1-2):213–220. doi: 10.1002/jnr.490130115. [DOI] [PubMed] [Google Scholar]
- Haydon P. G., Cohan C. S., McCobb D. P., Miller H. R., Kater S. B. Neuron-specific growth cone properties as seen in identified neurons of Helisoma. J Neurosci Res. 1985;13(1-2):135–147. doi: 10.1002/jnr.490130110. [DOI] [PubMed] [Google Scholar]
- Haydon P. G., McCobb D. P., Kater S. B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science. 1984 Nov 2;226(4674):561–564. doi: 10.1126/science.6093252. [DOI] [PubMed] [Google Scholar]
- Hughes W. F., LaVelle A. On the synaptogenic sequence in the chick retina. Anat Rec. 1974 Jul;179(3):297–301. doi: 10.1002/ar.1091790302. [DOI] [PubMed] [Google Scholar]
- Hyndman A. G., Adler R. Neural retina development in vitro. Effects of tissue extracts on cell survival and neuritic development in purified neuronal cultures. Dev Neurosci. 1982;5(1):40–53. doi: 10.1159/000112660. [DOI] [PubMed] [Google Scholar]
- Jameson L., Frey T., Zeeberg B., Dalldorf F., Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 1980 May 27;19(11):2472–2479. doi: 10.1021/bi00552a027. [DOI] [PubMed] [Google Scholar]
- Kato S., Negishi K., Teranishi T. Embryonic development of monoaminergic neurons in the chick retina. J Comp Neurol. 1984 Apr 10;224(3):437–444. doi: 10.1002/cne.902240311. [DOI] [PubMed] [Google Scholar]
- Kostenko M. A., Musienko V. S., Smolikhina T. I. Ca2+ and pH affect the neurite formation in cultured mollusc isolated neurones. Brain Res. 1983 Oct 3;276(1):43–50. doi: 10.1016/0006-8993(83)90546-2. [DOI] [PubMed] [Google Scholar]
- Krayanek S., Goldberg S. Oriented extracellular channels and axonal guidance in the embryonic chick retina. Dev Biol. 1981 May;84(1):41–50. doi: 10.1016/0012-1606(81)90368-7. [DOI] [PubMed] [Google Scholar]
- Landis S. C. Neuronal growth cones. Annu Rev Physiol. 1983;45:567–580. doi: 10.1146/annurev.ph.45.030183.003031. [DOI] [PubMed] [Google Scholar]
- Lankford K., De Mello F. G., Klein W. L. A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retina neurons. Neurosci Lett. 1987 Mar 31;75(2):169–174. doi: 10.1016/0304-3940(87)90292-8. [DOI] [PubMed] [Google Scholar]
- Letourneau P. C. Cell-substratum adhesion of neurite growth cones, and its role in neurite elongation. Exp Cell Res. 1979 Nov;124(1):127–138. doi: 10.1016/0014-4827(79)90263-5. [DOI] [PubMed] [Google Scholar]
- Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
- Letourneau P. C. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol. 1978 Sep;66(1):183–196. doi: 10.1016/0012-1606(78)90283-x. [DOI] [PubMed] [Google Scholar]
- Llinás R., Sugimori M. Calcium conductances in Purkinje cell dendrites: their role in development and integration. Prog Brain Res. 1979;51:323–334. doi: 10.1016/S0079-6123(08)61312-6. [DOI] [PubMed] [Google Scholar]
- Ludueña M. A., Wessells N. K. Cell locomotion, nerve elongation, and microfilaments. Dev Biol. 1973 Feb;30(2):427–440. doi: 10.1016/0012-1606(73)90100-0. [DOI] [PubMed] [Google Scholar]
- Matsuzawa H., Nirenberg M. Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3472–3476. doi: 10.1073/pnas.72.9.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAI J., KAWASAKI Y. Studies on the mechanism determining the course of nerve fibers in tissue culture. I. The reaction of the growth cone to various obstructions. Z Zellforsch Mikrosk Anat. 1959;51:108–122. doi: 10.1007/BF00345083. [DOI] [PubMed] [Google Scholar]
- Ouimet C. C., Miller P. E., Hemmings H. C., Jr, Walaas S. I., Greengard P. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci. 1984 Jan;4(1):111–124. doi: 10.1523/JNEUROSCI.04-01-00111.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paes de Carvalho R., de Mello F. G. Expression of A1 adenosine receptors modulating dopamine-dependent cyclic AMP accumulation in the chick embryo retina. J Neurochem. 1985 Mar;44(3):845–851. doi: 10.1111/j.1471-4159.1985.tb12892.x. [DOI] [PubMed] [Google Scholar]
- Patel N. B., Poo M. M. Perturbation of the direction of neurite growth by pulsed and focal electric fields. J Neurosci. 1984 Dec;4(12):2939–2947. doi: 10.1523/JNEUROSCI.04-12-02939.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel N. B., Xie Z., Young S. H., Poo M. Response of nerve growth cone to focal electric currents. J Neurosci Res. 1985;13(1-2):245–256. doi: 10.1002/jnr.490130117. [DOI] [PubMed] [Google Scholar]
- Pfenninger K. H., Johnson M. P. Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. J Cell Biol. 1983 Oct;97(4):1038–1042. doi: 10.1083/jcb.97.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter-Landsberg C., Jastorff B. In vitro phosphorylation of microtubule-associated protein 2: differential effects of cyclic AMP analogues. J Neurochem. 1985 Oct;45(4):1218–1222. doi: 10.1111/j.1471-4159.1985.tb05545.x. [DOI] [PubMed] [Google Scholar]
- Roberts A., Patton D. T. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos. J Neurosci Res. 1985;13(1-2):23–38. doi: 10.1002/jnr.490130103. [DOI] [PubMed] [Google Scholar]
- Schulz D. W., Stanford E. J., Wyrick S. W., Mailman R. B. Binding of [3H]SCH23390 in rat brain: regional distribution and effects of assay conditions and GTP suggest interactions at a D1-like dopamine receptor. J Neurochem. 1985 Nov;45(5):1601–1611. doi: 10.1111/j.1471-4159.1985.tb07233.x. [DOI] [PubMed] [Google Scholar]
- Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeley P. J., Greene L. A. Short-latency local actions of nerve growth factor at the growth cone. Proc Natl Acad Sci U S A. 1983 May;80(9):2789–2793. doi: 10.1073/pnas.80.9.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoof J. C., Kebabian J. W. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 1984 Dec 3;35(23):2281–2296. doi: 10.1016/0024-3205(84)90519-8. [DOI] [PubMed] [Google Scholar]
- Suarez-Isla B. A., Pelto D. J., Thompson J. M., Rapoport S. I. Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Brain Res. 1984 Jun;316(2):263–270. doi: 10.1016/0165-3806(84)90311-0. [DOI] [PubMed] [Google Scholar]
- Tada M., Kirchberger M. A., Katz A. M. Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1975 Apr 10;250(7):2640–2647. [PubMed] [Google Scholar]
- Tada M., Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1974 Oct 10;249(19):6174–6180. [PubMed] [Google Scholar]
- Tsui H. C., Lankford K. L., Klein W. L. Differentiation of neuronal growth cones: specialization of filopodial tips for adhesive interactions. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8256–8260. doi: 10.1073/pnas.82.23.8256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsui H. C., Ris H., Klein W. L. Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5779–5783. doi: 10.1073/pnas.80.18.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsui H. T., Lankford K. L., Ris H., Klein W. L. Novel organization of microtubules in cultured central nervous system neurons: formation of hairpin loops at ends of maturing neurites. J Neurosci. 1984 Dec;4(12):3002–3013. doi: 10.1523/JNEUROSCI.04-12-03002.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ventura A. L., Klein W. L., de Mello F. G. Differential ontogenesis of D1 and D2 dopaminergic receptors in the chick embryo retina. Brain Res. 1984 Feb;314(2):217–223. doi: 10.1016/0165-3806(84)90044-0. [DOI] [PubMed] [Google Scholar]
- Walaas S. I., Greengard P. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci. 1984 Jan;4(1):84–98. doi: 10.1523/JNEUROSCI.04-01-00084.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Mello M. C., Ventura A. L., Paes de Carvalho R., Klein W. L., de Mello F. G. Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5708–5712. doi: 10.1073/pnas.79.18.5708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Mello M. C., de Mello F. G. Topographical organization of the dopamine-dependent adenylate cyclase of the chick embryo retina. Brain Res. 1985 Feb 25;328(1):59–63. doi: 10.1016/0006-8993(85)91322-8. [DOI] [PubMed] [Google Scholar]