Abstract
Segregation analysis of breast cancer in families can provide the logical basis and the specific genetic models for mapping and identifying genes responsible for human breast cancer. Patterns of breast cancer occurrence in families were investigated by complex segregation analysis. In a sample of 1579 nuclear families ascertained through a population-based series of probands, an autosomal dominant model with a highly penetrant susceptibility allele fully explained disease clustering. From the maximum-likelihood Mendelian model, the frequency of the susceptibility allele was 0.0006 in the general population, and lifetime risk of breast cancer was 0.82 among susceptible women and 0.08 among women without the susceptibility allele. Inherited susceptibility affected only 4% of families in the sample: multiple cases of this relatively common disease occurred in other families by chance. The same genetic models, with higher gene frequency, explained disease clustering in an extended kindred at high risk of breast cancer. Evidence for a highly penetrant, autosomal dominant susceptibility allele for breast cancer in a high-risk family and the general population suggests that high-risk families can serve as models for understanding breast cancer in the population as a whole.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berberich F. R., Berberich M. S., King M. C., Engleman E. G., Grumet F. C. Hodgkin's disease susceptibility: linkage to the HLA locus demonstrated by a new concordance method. Hum Immunol. 1983 Apr;6(4):207–217. doi: 10.1016/0198-8859(83)90094-0. [DOI] [PubMed] [Google Scholar]
- Bodmer W. F., Bailey C. J., Bodmer J., Bussey H. J., Ellis A., Gorman P., Lucibello F. C., Murday V. A., Rider S. H., Scambler P. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987 Aug 13;328(6131):614–616. doi: 10.1038/328614a0. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
- Cavalli-Sforza L. L., King M. C. Detecting linkage for genetically heterogeneous diseases and detecting heterogeneity with linkage data. Am J Hum Genet. 1986 May;38(5):599–616. [PMC free article] [PubMed] [Google Scholar]
- Cavenee W. K., Hansen M. F., Nordenskjold M., Kock E., Maumenee I., Squire J. A., Phillips R. A., Gallie B. L. Genetic origin of mutations predisposing to retinoblastoma. Science. 1985 Apr 26;228(4698):501–503. doi: 10.1126/science.3983638. [DOI] [PubMed] [Google Scholar]
- Fearon E. R., Vogelstein B., Feinberg A. P. Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature. 1984 May 10;309(5964):176–178. doi: 10.1038/309176a0. [DOI] [PubMed] [Google Scholar]
- Francke U., Holmes L. B., Atkins L., Riccardi V. M. Aniridia-Wilms' tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet. 1979;24(3):185–192. doi: 10.1159/000131375. [DOI] [PubMed] [Google Scholar]
- Francke U., Ochs H. D., de Martinville B., Giacalone J., Lindgren V., Distèche C., Pagon R. A., Hofker M. H., van Ommen G. J., Pearson P. L. Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome. Am J Hum Genet. 1985 Mar;37(2):250–267. [PMC free article] [PubMed] [Google Scholar]
- Go R. C., King M. C., Bailey-Wilson J., Elston R. C., Lynch H. T. Genetic epidemiology of breast cancer and associated cancers in high-risk families. I. Segregation analysis. J Natl Cancer Inst. 1983 Sep;71(3):455–461. [PubMed] [Google Scholar]
- Goldstein A. M., Haile R. W., Marazita M. L., Paganini-Hill A. A genetic epidemiologic investigation of breast cancer in families with bilateral breast cancer. I. Segregation analysis. J Natl Cancer Inst. 1987 May;78(5):911–918. [PubMed] [Google Scholar]
- Gusella J. F., Wexler N. S., Conneally P. M., Naylor S. L., Anderson M. A., Tanzi R. E., Watkins P. C., Ottina K., Wallace M. R., Sakaguchi A. Y. A polymorphic DNA marker genetically linked to Huntington's disease. Nature. 1983 Nov 17;306(5940):234–238. doi: 10.1038/306234a0. [DOI] [PubMed] [Google Scholar]
- King M. C., Elston R. C. Genetic epidemiology of breast cancer: a comment on heterogeneity. Genet Epidemiol. 1985;2(2):167–169. doi: 10.1002/gepi.1370020207. [DOI] [PubMed] [Google Scholar]
- King M. C., Lee G. M., Spinner N. B., Thomson G., Wrensch M. R. Genetic epidemiology. Annu Rev Public Health. 1984;5:1–52. doi: 10.1146/annurev.pu.05.050184.000245. [DOI] [PubMed] [Google Scholar]
- Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koufos A., Hansen M. F., Lampkin B. C., Workman M. L., Copeland N. G., Jenkins N. A., Cavenee W. K. Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour. Nature. 1984 May 10;309(5964):170–172. doi: 10.1038/309170a0. [DOI] [PubMed] [Google Scholar]
- Lalouel J. M., Rao D. C., Morton N. E., Elston R. C. A unified model for complex segregation analysis. Am J Hum Genet. 1983 Sep;35(5):816–826. [PMC free article] [PubMed] [Google Scholar]
- Leppert M. F., Hasstedt S. J., Holm T., O'Connell P., Wu L., Ash O., Williams R. R., White R. A DNA probe for the LDL receptor gene is tightly linked to hypercholesterolemia in a pedigree with early coronary disease. Am J Hum Genet. 1986 Sep;39(3):300–306. [PMC free article] [PubMed] [Google Scholar]
- Mantel N. Familial breast cancer and the awareness bias. Am J Epidemiol. 1987 May;125(5):920–921. doi: 10.1093/oxfordjournals.aje.a114611. [DOI] [PubMed] [Google Scholar]
- Mathew C. G., Chin K. S., Easton D. F., Thorpe K., Carter C., Liou G. I., Fong S. L., Bridges C. D., Haak H., Kruseman A. C. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature. 1987 Aug 6;328(6130):527–528. doi: 10.1038/328527a0. [DOI] [PubMed] [Google Scholar]
- Orkin S. H., Goldman D. S., Sallan S. E. Development of homozygosity for chromosome 11p markers in Wilms' tumour. Nature. 1984 May 10;309(5964):172–174. doi: 10.1038/309172a0. [DOI] [PubMed] [Google Scholar]
- Ottman R., Pike M. C., King M. C., Casagrande J. T., Henderson B. E. Familial breast cancer in a population-based series. Am J Epidemiol. 1986 Jan;123(1):15–21. doi: 10.1093/oxfordjournals.aje.a114209. [DOI] [PubMed] [Google Scholar]
- Rosen P. P., Lesser M. L., Senie R. T., Kinne D. W. Epidemiology of breast carcinoma III: relationship of family history to tumor type. Cancer. 1982 Jul 1;50(1):171–179. doi: 10.1002/1097-0142(19820701)50:1<171::aid-cncr2820500132>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- Schwartz A. G., King M. C., Belle S. H., Satariano W. A., Swanson G. M. Risk of breast cancer to relatives of young breast cancer patients. J Natl Cancer Inst. 1985 Oct;75(4):665–668. [PubMed] [Google Scholar]
- Simpson N. E., Kidd K. K., Goodfellow P. J., McDermid H., Myers S., Kidd J. R., Jackson C. E., Duncan A. M., Farrer L. A., Brasch K. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature. 1987 Aug 6;328(6130):528–530. doi: 10.1038/328528a0. [DOI] [PubMed] [Google Scholar]
- Solomon E., Voss R., Hall V., Bodmer W. F., Jass J. R., Jeffreys A. J., Lucibello F. C., Patel I., Rider S. H. Chromosome 5 allele loss in human colorectal carcinomas. Nature. 1987 Aug 13;328(6131):616–619. doi: 10.1038/328616a0. [DOI] [PubMed] [Google Scholar]
- Sparkes R. S., Murphree A. L., Lingua R. W., Sparkes M. C., Field L. L., Funderburk S. J., Benedict W. F. Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science. 1983 Feb 25;219(4587):971–973. doi: 10.1126/science.6823558. [DOI] [PubMed] [Google Scholar]
- Tsui L. C., Buchwald M., Barker D., Braman J. C., Knowlton R., Schumm J. W., Eiberg H., Mohr J., Kennedy D., Plavsic N. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science. 1985 Nov 29;230(4729):1054–1057. doi: 10.1126/science.2997931. [DOI] [PubMed] [Google Scholar]
- Wainwright B. J., Scambler P. J., Schmidtke J., Watson E. A., Law H. Y., Farrall M., Cooke H. J., Eiberg H., Williamson R. Localization of cystic fibrosis locus to human chromosome 7cen-q22. 1985 Nov 28-Dec 4Nature. 318(6044):384–385. doi: 10.1038/318384a0. [DOI] [PubMed] [Google Scholar]
- White R., Woodward S., Leppert M., O'Connell P., Hoff M., Herbst J., Lalouel J. M., Dean M., Vande Woude G. A closely linked genetic marker for cystic fibrosis. 1985 Nov 28-Dec 4Nature. 318(6044):382–384. doi: 10.1038/318382a0. [DOI] [PubMed] [Google Scholar]
- Young J. L., Jr, Percy C. L., Asire A. J., Berg J. W., Cusano M. M., Gloeckler L. A., Horm J. W., Lourie W. I., Jr, Pollack E. S., Shambaugh E. M. Cancer incidence and mortality in the United States, 1973-77. Natl Cancer Inst Monogr. 1981 Jun;(57):1–187. [PubMed] [Google Scholar]