Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 May;85(9):3095–3099. doi: 10.1073/pnas.85.9.3095

Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms.

A W Boyd 1, S O Wawryk 1, G F Burns 1, J V Fecondo 1
PMCID: PMC280150  PMID: 3362863

Abstract

The role of intercellular adhesion molecule 1 (ICAM-1) in immune function was probed by using the Wehi-CAM-1 (W-CAM-1) monoclonal antibody. This antibody blocks aggregation of cell lines mediated by the ICAM-1 molecule and is here shown to block homotypic binding of purified populations of activated T and B lymphocytes (blasts) and also aggregation of mixed T- and B-cell blasts. We also demonstrate that W-CAM-1 inhibited T-cell adhesion to normal human endothelial cells, the first step in lymphocyte egress into the tissues. In tests of immune function, W-CAM-1 had a modest inhibitory effect on T- and B-cell activation by potent mitogens and no effect on the response of activated lymphocytes to lymphokines. By contrast, activation induced by cell-cell contact (mixed lymphocyte reaction, T-cell-mediated B-cell activation) was significantly inhibited. Moreover, the antibody was shown to block elements of both effector arms of the immune system (cytotoxic cell function and immunoglobulin production). These findings show that the ICAM-1 molecule is a central component of the mechanism of lymphocyte-endothelial cell adhesion. The studies of lymphoid function demonstrate a pivotal role for this molecule in both the T-cell/T-cell and T-cell/B-cell interactions, which underpin the regulation of the immune response, and in the mechanism of cell-mediated cytotoxicity.

Full text

PDF
3095

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd A. W., Anderson K. C., Freedman A. S., Fisher D. C., Slaughenhoupt B., Schlossman S. F., Nadler L. M. Studies of in vitro activation and differentiation of human B lymphocytes. I. Phenotypic and functional characterization of the B cell population responding to anti-Ig antibody. J Immunol. 1985 Mar;134(3):1516–1523. [PubMed] [Google Scholar]
  2. Boyd A. W. Human leukocyte antigens: an update on structure, function and nomenclature. Pathology. 1987 Oct;19(4):329–337. doi: 10.3109/00313028709103879. [DOI] [PubMed] [Google Scholar]
  3. Clark E. A., Ledbetter J. A. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4494–4498. doi: 10.1073/pnas.83.12.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davignon D., Martz E., Reynolds T., Kürzinger K., Springer T. A. Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4535–4539. doi: 10.1073/pnas.78.7.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 Jul 1;137(1):245–254. [PubMed] [Google Scholar]
  6. Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol. 1986;2:81–116. doi: 10.1146/annurev.cb.02.110186.000501. [DOI] [PubMed] [Google Scholar]
  7. Haskard D., Cavender D., Beatty P., Springer T., Ziff M. T lymphocyte adhesion to endothelial cells: mechanisms demonstrated by anti-LFA-1 monoclonal antibodies. J Immunol. 1986 Nov 1;137(9):2901–2906. [PubMed] [Google Scholar]
  8. Hildreth J. E., Gotch F. M., Hildreth P. D., McMichael A. J. A human lymphocyte-associated antigen involved in cell-mediated lympholysis. Eur J Immunol. 1983 Mar;13(3):202–208. doi: 10.1002/eji.1830130305. [DOI] [PubMed] [Google Scholar]
  9. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  10. Inaba K., Steinman R. M. Monoclonal antibodies to LFA-1 and to CD4 inhibit the mixed leukocyte reaction after the antigen-dependent clustering of dendritic cells and T lymphocytes. J Exp Med. 1987 May 1;165(5):1403–1417. doi: 10.1084/jem.165.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jalkanen S. T., Bargatze R. F., Herron L. R., Butcher E. C. A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol. 1986 Oct;16(10):1195–1202. doi: 10.1002/eji.1830161003. [DOI] [PubMed] [Google Scholar]
  12. Martz E. LFA-1 and other accessory molecules functioning in adhesions of T and B lymphocytes. Hum Immunol. 1987 Jan;18(1):3–37. doi: 10.1016/0198-8859(87)90110-8. [DOI] [PubMed] [Google Scholar]
  13. Mentzer S. J., Burakoff S. J., Faller D. V. Adhesion of T lymphocytes to human endothelial cells is regulated by the LFA-1 membrane molecule. J Cell Physiol. 1986 Feb;126(2):285–290. doi: 10.1002/jcp.1041260219. [DOI] [PubMed] [Google Scholar]
  14. Obrink B. Epithelial cell adhesion molecules. Exp Cell Res. 1986 Mar;163(1):1–21. doi: 10.1016/0014-4827(86)90554-9. [DOI] [PubMed] [Google Scholar]
  15. Parish C. R., McKenzie I. F. A sensitive rosetting method for detecting subpopulations of lymphocytes which react with alloantisera. J Immunol Methods. 1978;20:173–183. doi: 10.1016/0022-1759(78)90254-5. [DOI] [PubMed] [Google Scholar]
  16. Rothlein R., Dustin M. L., Marlin S. D., Springer T. A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol. 1986 Aug 15;137(4):1270–1274. [PubMed] [Google Scholar]
  17. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  18. Springer T. A., Thompson W. S., Miller L. J., Schmalstieg F. C., Anderson D. C. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984 Dec 1;160(6):1901–1918. doi: 10.1084/jem.160.6.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tedder T. F., Boyd A. W., Freedman A. S., Nadler L. M., Schlossman S. F. The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J Immunol. 1985 Aug;135(2):973–979. [PubMed] [Google Scholar]
  20. Tedder T. F., Schmidt R. E., Rudd C. E., Kornacki M. M., Ritz J., Schlossman S. F. Function of the LFA-1 and T4 molecules in the direct activation of resting human B lymphocytes by T lymphocytes. Eur J Immunol. 1986 Dec;16(12):1539–1543. doi: 10.1002/eji.1830161212. [DOI] [PubMed] [Google Scholar]
  21. Weiss A., Imboden J., Shoback D., Stobo J. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4169–4173. doi: 10.1073/pnas.81.13.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weiss M. J., Daley J. F., Hodgdon J. C., Reinherz E. L. Calcium dependency of antigen-specific (T3-Ti) and alternative (T11) pathways of human T-cell activation. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6836–6840. doi: 10.1073/pnas.81.21.6836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weissman I. L. Lymphocyte homing receptors and the immune response in vivo. Bioessays. 1986 Sep;5(3):112–116. doi: 10.1002/bies.950050305. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES