Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 May;85(9):3240–3244. doi: 10.1073/pnas.85.9.3240

Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla.

R Fischer-Colbrie 1, A Iacangelo 1, L E Eiden 1
PMCID: PMC280180  PMID: 3283739

Abstract

The influence of neurogenic versus humoral factors on mRNA levels of several secretory proteins of rat adrenal medulla was studied in vivo. Increased splanchnic nerve activity was generated (reflexly) with insulin treatment. Twenty-four hours after insulin injection, levels of mRNAs encoding neuropeptides (enkephalin and neuropeptide Y) were increased 6.5-fold, whereas those of mRNAs for the major secretory proteins (chromogranins A and B) were unchanged. Bilateral transection of the splanchnic nerves completely prevented this increase. Hypophysectomy decreased levels of chromogranin A mRNA to 32% of control, suggesting a dependence on hormones of the pituitary-adrenal axis. Treatment of hypophysectomized rats with dexamethasone restored chromogranin A mRNA to basal levels. Chromogranin B mRNA levels were not changed by either insulin treatment or hypophysectomy. These results demonstrate (i) that different classes of secretory proteins present in chromaffin granules are regulated by different mechanisms, (ii) that this regulation occurs at a pretranslational site, and (iii) that the relative concentration of secretory constituents of chromaffin granules may vary. The significance of an altered composition of secretory-granule constituents, which may be important in hypotension or stress, is discussed.

Full text

PDF
3240

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. M., Tischler A. S., Lee Y. C., Bloom S. R. Neuropeptide Y (NPY) in PC12 phaeochromocytoma cultures: responses to dexamethasone and nerve growth factor. Neurosci Lett. 1984 May 18;46(3):291–296. doi: 10.1016/0304-3940(84)90114-9. [DOI] [PubMed] [Google Scholar]
  2. Benedum U. M., Lamouroux A., Konecki D. S., Rosa P., Hille A., Baeuerle P. A., Frank R., Lottspeich F., Mallet J., Huttner W. B. The primary structure of human secretogranin I (chromogranin B): comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. EMBO J. 1987 May;6(5):1203–1211. doi: 10.1002/j.1460-2075.1987.tb02355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bohn M. C., Kessler J. A., Golightly L., Black I. B. Appearance of enkephalin-immunoreactivity in rat adrenal medulla following treatment with nicotinic antagonists or reserpine. Cell Tissue Res. 1983;231(3):469–479. doi: 10.1007/BF00218106. [DOI] [PubMed] [Google Scholar]
  4. CANTU R. C., WISE B. L., GOLDFIEN A., GULLIXSON K. S., FISCHER N., GANONG W. F. NEURAL PATHWAYS MEDIATING THE INCREASE IN ADRENAL MEDULLARY SECRETION PRODUCED BY HYPOGLYCEMIA. Proc Soc Exp Biol Med. 1963 Oct;114:10–13. doi: 10.3181/00379727-114-28572. [DOI] [PubMed] [Google Scholar]
  5. Ciaranello R. D., Wooten G. F., Axwlrod J. Regulation of dopamine beta-hydroxylase in rat adrenal glands. J Biol Chem. 1975 Apr 25;250(8):3204–3211. [PubMed] [Google Scholar]
  6. Coupland R. E., Tomlinson A., Crowe J., Brindley D. N. Effects of hypophysectomy and metyrapone on the catecholamine content and volumes of adrenaline- and noradrenaline-storing cells in the rat adrenal medulla. J Endocrinol. 1984 Jun;101(3):345–352. doi: 10.1677/joe.0.1010345. [DOI] [PubMed] [Google Scholar]
  7. Eiden L. E., Giraud P., Affolter H. U., Herbert E., Hotchkiss A. J. Alternative modes of enkephalin biosynthesis regulation by reserpine and cyclic AMP in cultured chromaffin cells. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3949–3953. doi: 10.1073/pnas.81.13.3949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eiden L. E., Hotchkiss A. J. Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells. Neuropeptides. 1983 Dec;4(1):1–9. doi: 10.1016/0143-4179(83)90002-1. [DOI] [PubMed] [Google Scholar]
  9. Fischer-Colbrie R., Diez-Guerra J., Emson P. C., Winkler H. Bovine chromaffin granules: immunological studies with antisera against neuropeptide Y, [Met]enkephalin and bombesin. Neuroscience. 1986 May;18(1):167–174. doi: 10.1016/0306-4522(86)90185-5. [DOI] [PubMed] [Google Scholar]
  10. Fischer-Colbrie R., Hagn C., Schober M. Chromogranins A, B, and C: widespread constituents of secretory vesicles. Ann N Y Acad Sci. 1987;493:120–134. doi: 10.1111/j.1749-6632.1987.tb27189.x. [DOI] [PubMed] [Google Scholar]
  11. Fischer-Colbrie R., Lassmann H., Hagn C., Winkler H. Immunological studies on the distribution of chromogranin A and B in endocrine and nervous tissues. Neuroscience. 1985 Nov;16(3):547–555. doi: 10.1016/0306-4522(85)90191-5. [DOI] [PubMed] [Google Scholar]
  12. Fricker L. D., Snyder S. H. Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3886–3890. doi: 10.1073/pnas.79.12.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hook V. Y., Eiden L. E., Brownstein M. J. A carboxypeptidase processing enzyme for enkephalin precursors. Nature. 1982 Jan 28;295(5847):341–342. doi: 10.1038/295341a0. [DOI] [PubMed] [Google Scholar]
  14. Iacangelo A., Okayama H., Eiden L. E. Primary structure of rat chromogranin A and distribution of its mRNA. FEBS Lett. 1988 Jan 25;227(2):115–121. doi: 10.1016/0014-5793(88)80880-9. [DOI] [PubMed] [Google Scholar]
  15. Kanamatsu T., Unsworth C. D., Diliberto E. J., Jr, Viveros O. H., Hong J. S. Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9245–9249. doi: 10.1073/pnas.83.23.9245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Khalil Z., Marley P. D., Livett B. G. Elevation in plasma catecholamines in response to insulin stress is under both neuronal and nonneuronal control. Endocrinology. 1986 Jul;119(1):159–167. doi: 10.1210/endo-119-1-159. [DOI] [PubMed] [Google Scholar]
  17. Kilpatrick D. L., Howells R. D., Fleminger G., Udenfriend S. Denervation of rat adrenal glands markedly increases preproenkephalin mRNA. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7221–7223. doi: 10.1073/pnas.81.22.7221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kley N., Loeffler J. P., Pittius C. W., Höllt V. Involvement of ion channels in the induction of proenkephalin A gene expression by nicotine and cAMP in bovine chromaffin cells. J Biol Chem. 1987 Mar 25;262(9):4083–4089. [PubMed] [Google Scholar]
  19. Kondo H. Immunohistochemical analysis of the localization of neuropeptides in the adrenal gland. Arch Histol Jpn. 1985 Dec;48(5):453–481. doi: 10.1679/aohc.48.453. [DOI] [PubMed] [Google Scholar]
  20. Kuramoto H., Kondo H., Fujita T. Calcitonin gene-related peptide (CGRP)-like immunoreactivity in scattered chromaffin cells and nerve fibers in the adrenal gland of rats. Cell Tissue Res. 1987 Feb;247(2):309–315. doi: 10.1007/BF00218312. [DOI] [PubMed] [Google Scholar]
  21. Kuramoto H., Kondo H., Fujita T. Neuropeptide tyrosine (NPY)-like immunoreactivity in adrenal chromaffin cells and intraadrenal nerve fibers of rats. Anat Rec. 1986 Mar;214(3):321–328. doi: 10.1002/ar.1092140312. [DOI] [PubMed] [Google Scholar]
  22. LaGamma E. F., Adler J. E., Black I. B. Impulse activity differentially regulates [Leu]enkephalin and catecholamine characters in the adrenal medulla. Science. 1984 Jun 8;224(4653):1102–1104. doi: 10.1126/science.6144183. [DOI] [PubMed] [Google Scholar]
  23. LaGamma E. F., White J. D., Adler J. E., Krause J. E., McKelvy J. F., Black I. B. Depolarization regulates adrenal preproenkephalin mRNA. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8252–8255. doi: 10.1073/pnas.82.23.8252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Larhammar D., Ericsson A., Persson H. Structure and expression of the rat neuropeptide Y gene. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2068–2072. doi: 10.1073/pnas.84.7.2068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol. 1985 May 5;183(1):1–12. doi: 10.1016/0022-2836(85)90276-1. [DOI] [PubMed] [Google Scholar]
  26. Lima L., Sourkes T. L. Reserpine and the monoaminergic regulation of adrenal dopamine beta-hydroxylase activity. Neuroscience. 1986;17(1):235–245. doi: 10.1016/0306-4522(86)90239-3. [DOI] [PubMed] [Google Scholar]
  27. Lundberg J. M., Hökfelt T., Hemsén A., Theodorsson-Norheim E., Pernow J., Hamberger B., Goldstein M. Neuropeptide Y-like immunoreactivity in adrenaline cells of adrenal medulla and in tumors and plasma of pheochromocytoma patients. Regul Pept. 1986 Jan;13(2):169–182. doi: 10.1016/0167-0115(86)90224-7. [DOI] [PubMed] [Google Scholar]
  28. Minth C. D., Bloom S. R., Polak J. M., Dixon J. E. Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4577–4581. doi: 10.1073/pnas.81.14.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Patrick R. L., Kirshner N. Effect of stimulation on the levels of tyrosine hydroxylase, dopamine beta-hydroxylase, and catecholamines in intact and denervated rat adrenal glands. Mol Pharmacol. 1971 Jan;7(1):87–96. [PubMed] [Google Scholar]
  30. Pruss R. M., Mezey E., Forman D. S., Eiden L. E., Hotchkiss A. J., DiMaggio D. A., O'Donohue T. L. Enkephalin and neuropeptide Y: two colocalized neuropeptides are independently regulated in primary cultures of bovine chromaffin cells. Neuropeptides. 1986 May-Jun;7(4):315–327. doi: 10.1016/0143-4179(86)90025-9. [DOI] [PubMed] [Google Scholar]
  31. Rowe D. W., Moen R. C., Davidson J. M., Byers P. H., Bornstein P., Palmiter R. D. Correlation of procollagen mRNA levels in normal and transformed chick embryo fibroblasts with different rates of procollagen synthesis. Biochemistry. 1978 May 2;17(9):1581–1590. doi: 10.1021/bi00602a001. [DOI] [PubMed] [Google Scholar]
  32. Schultzberg M., Lundberg J. M., Hökfelt T., Terenius L., Brandt J., Elde R. P., Goldstein M. Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience. 1978;3(12):1169–1186. doi: 10.1016/0306-4522(78)90137-9. [DOI] [PubMed] [Google Scholar]
  33. Siegel R. E., Eiden L. E., Affolter H. U. Elevated potassium stimulates enkephalin biosynthesis in bovine chromaffin cells. Neuropeptides. 1985 Dec;6(6):543–552. doi: 10.1016/0143-4179(85)90117-9. [DOI] [PubMed] [Google Scholar]
  34. Sietzen M., Schober M., Fischer-Colbrie R., Scherman D., Sperk G., Winkler H. Rat adrenal medulla: levels of chromogranins, enkephalins, dopamine beta-hydroxylase and of the amine transporter are changed by nervous activity and hypophysectomy. Neuroscience. 1987 Jul;22(1):131–139. doi: 10.1016/0306-4522(87)90203-x. [DOI] [PubMed] [Google Scholar]
  35. Thoenen H. Trans-synaptic enzyme induction. Life Sci. 1974 Jan 16;14(2):223–235. doi: 10.1016/0024-3205(74)90052-6. [DOI] [PubMed] [Google Scholar]
  36. Udenfriend S., Kilpatrick D. L. Biochemistry of the enkephalins and enkephalin-containing peptides. Arch Biochem Biophys. 1983 Mar;221(2):309–323. doi: 10.1016/0003-9861(83)90149-2. [DOI] [PubMed] [Google Scholar]
  37. Varndell I. M., Polak J. M., Allen J. M., Terenghi G., Bloom S. R. Neuropeptide tyrosine (NPY) immunoreactivity in norepinephrine-containing cells and nerves of the mammalian adrenal gland. Endocrinology. 1984 Apr;114(4):1460–1462. doi: 10.1210/endo-114-4-1460. [DOI] [PubMed] [Google Scholar]
  38. Viveros O. H., Diliberto E. J., Jr, Hazum E., Chang K. J. Enkephalins as possible adrenomedullary hormones: storage, secretion, and regulation of synthesis. Adv Biochem Psychopharmacol. 1980;22:191–204. [PubMed] [Google Scholar]
  39. Viveros O. H., Diliberto E. J., Jr, Hong J. H., Kizer J. S., Unsworth C. D., Kanamatsu T. The regulation of enkephalin levels in adrenomedullary cells and its relation to chromaffin vesicle biogenesis and functional plasticity. Ann N Y Acad Sci. 1987;493:324–341. doi: 10.1111/j.1749-6632.1987.tb27216.x. [DOI] [PubMed] [Google Scholar]
  40. Waschek J. A., Pruss R. M., Siegel R. E., Eiden L. E., Bader M. F., Aunis D. Regulation of enkephalin, VIP, and chromogranin biosynthesis in actively secreting chromaffin cells. Multiple strategies for multiple peptides. Ann N Y Acad Sci. 1987;493:308–323. doi: 10.1111/j.1749-6632.1987.tb27215.x. [DOI] [PubMed] [Google Scholar]
  41. Weinshilboum R., Axelrod J. Dopamine-beta-hydroxylase activity in the rat after hypophysectomy. Endocrinology. 1970 Nov;87(5):894–899. doi: 10.1210/endo-87-5-894. [DOI] [PubMed] [Google Scholar]
  42. Wilson S. P., Kirshner N. Effects of ascorbic acid, dexamethasone, and insulin on the catecholamine and opioid peptide stores of cultured adrenal medullary chromaffin cells. J Neurosci. 1983 Oct;3(10):1971–1978. doi: 10.1523/JNEUROSCI.03-10-01971.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Winkler H., Apps D. K., Fischer-Colbrie R. The molecular function of adrenal chromaffin granules: established facts and unresolved topics. Neuroscience. 1986 Jun;18(2):261–290. doi: 10.1016/0306-4522(86)90154-5. [DOI] [PubMed] [Google Scholar]
  44. Winkler H., Sietzen M., Schober M. The life cycle of catecholamine-storing vesicles. Ann N Y Acad Sci. 1987;493:3–19. doi: 10.1111/j.1749-6632.1987.tb27176.x. [DOI] [PubMed] [Google Scholar]
  45. Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976;1(2):65–80. doi: 10.1016/0306-4522(76)90001-4. [DOI] [PubMed] [Google Scholar]
  46. Wurtman R. J., Axelrod J. Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem. 1966 May 25;241(10):2301–2305. [PubMed] [Google Scholar]
  47. Yoshikawa K., Williams C., Sabol S. L. Rat brain preproenkephalin mRNA. cDNA cloning, primary structure, and distribution in the central nervous system. J Biol Chem. 1984 Nov 25;259(22):14301–14308. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES