Abstract
Abnormal tubulofilamentous structures have been identified in electron micrographs of thin sections and negatively stained impression grids prepared from brains of animals with scrapie and other spongiform encephalopathies, and we showed that such tubules contain a core of filamentous structures resembling scrapie-associated fibrils (SAF). We treated impression grids from brains of scrapie-infected hamsters with several substances that bind to or cleave proteins and nucleic acids to see if they had any effect on the abnormal tubulofilamentous structures. Treatment with three proteolytic enzymes reduced the caliber of the tubules from about 50 nm to 30 nm; subsequent treatment of the 30-nm tubules with DNase I left many typical SAF as well as transitional forms in which twisted SAF emerged from tubules. DNase treatment of the original thicker tubules had no effect, and no SAF were seen on grids. Treatment of the 30-nm tubules with any of three other nucleases (micrococcal, mung bean, and BAL-31) also produced SAF. However, treatment with RNase A had no effect either on the original 50-nm tubules or on the 30-nm tubules produced by proteolysis. Detergent treatment of any of the preparations produced SAF. Treatment with ethidium bromide resulted in staining of the tubules that was inhibited by magnesium ions. The data suggest that the abnormal tubulofilamentous particles found in spongiform encephalopathies may consist of an outer cylinder of protein, an inner cylinder of DNA, and an innermost core of SAF.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolton D. C., McKinley M. P., Prusiner S. B. Identification of a protein that purifies with the scrapie prion. Science. 1982 Dec 24;218(4579):1309–1311. doi: 10.1126/science.6815801. [DOI] [PubMed] [Google Scholar]
- Carlson G. A., Kingsbury D. T., Goodman P. A., Coleman S., Marshall S. T., DeArmond S., Westaway D., Prusiner S. B. Linkage of prion protein and scrapie incubation time genes. Cell. 1986 Aug 15;46(4):503–511. doi: 10.1016/0092-8674(86)90875-5. [DOI] [PubMed] [Google Scholar]
- DeArmond S. J., McKinley M. P., Barry R. A., Braunfeld M. B., McColloch J. R., Prusiner S. B. Identification of prion amyloid filaments in scrapie-infected brain. Cell. 1985 May;41(1):221–235. doi: 10.1016/0092-8674(85)90076-5. [DOI] [PubMed] [Google Scholar]
- Dees C., German T. L., Wade W. F., Marsh R. F. Characterization of proteins in membrane vesicles from scrapie-infected hamster brain. J Gen Virol. 1985 Apr;66(Pt 4):851–859. doi: 10.1099/0022-1317-66-4-851. [DOI] [PubMed] [Google Scholar]
- Diringer H., Gelderblom H., Hilmert H., Ozel M., Edelbluth C., Kimberlin R. H. Scrapie infectivity, fibrils and low molecular weight protein. Nature. 1983 Dec 1;306(5942):476–478. doi: 10.1038/306476a0. [DOI] [PubMed] [Google Scholar]
- Diringer H. Unconventional slow viruses, amyloidosis, and dementias. Lancet. 1985 Sep 21;2(8456):661–662. doi: 10.1016/s0140-6736(85)90022-4. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol. 1977 Feb;34(2):295–304. doi: 10.1099/0022-1317-34-2-295. [DOI] [PubMed] [Google Scholar]
- Manuelidis L., Sklaviadis T., Manuelidis E. E. Evidence suggesting that PrP is not the infectious agent in Creutzfeldt-Jakob disease. EMBO J. 1987 Feb;6(2):341–347. doi: 10.1002/j.1460-2075.1987.tb04760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh R. F., Castle B. E., Dees C., Wade W. F. Equilibrium density gradient centrifugation of the scrapie agent in Nycodenz. J Gen Virol. 1984 Nov;65(Pt 11):1963–1968. doi: 10.1099/0022-1317-65-11-1963. [DOI] [PubMed] [Google Scholar]
- Marsh R. F., Dees C., Castle B. E., Wade W. F., German T. L. Purification of the scrapie agent by density gradient centrifugation. J Gen Virol. 1984 Feb;65(Pt 2):415–421. doi: 10.1099/0022-1317-65-2-415. [DOI] [PubMed] [Google Scholar]
- McKinley M. P., Bolton D. C., Prusiner S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983 Nov;35(1):57–62. doi: 10.1016/0092-8674(83)90207-6. [DOI] [PubMed] [Google Scholar]
- Merz P. A., Somerville R. A., Wisniewski H. M., Iqbal K. Abnormal fibrils from scrapie-infected brain. Acta Neuropathol. 1981;54(1):63–74. doi: 10.1007/BF00691333. [DOI] [PubMed] [Google Scholar]
- Multhaup G., Diringer H., Hilmert H., Prinz H., Heukeshoven J., Beyreuther K. The protein component of scrapie-associated fibrils is a glycosylated low molecular weight protein. EMBO J. 1985 Jun;4(6):1495–1501. doi: 10.1002/j.1460-2075.1985.tb03808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller W., Gautier F. Interactions of heteroaromatic compounds with nucleic acids. A - T-specific non-intercalating DNA ligands. Eur J Biochem. 1975 Jun;54(2):385–394. doi: 10.1111/j.1432-1033.1975.tb04149.x. [DOI] [PubMed] [Google Scholar]
- Narang H. K., Asher D. M., Gajdusek D. C. Tubulofilaments in negatively stained scrapie-infected brains: relationship to scrapie-associated fibrils. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7730–7734. doi: 10.1073/pnas.84.21.7730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narang H. K., Asher D. M., Pomeroy K. L., Gajdusek D. C. Abnormal tubulovesicular particles in brains of hamsters with scrapie. Proc Soc Exp Biol Med. 1987 Apr;184(4):504–509. doi: 10.3181/00379727-184-42507. [DOI] [PubMed] [Google Scholar]
- Narang H. K. Scrapie, an unconventional virus: the current views. Proc Soc Exp Biol Med. 1987 Apr;184(4):375–388. doi: 10.3181/00379727-184-42490. [DOI] [PubMed] [Google Scholar]
- Prusiner S. B., Bolton D. C., Groth D. F., Bowman K. A., Cochran S. P., McKinley M. P. Further purification and characterization of scrapie prions. Biochemistry. 1982 Dec 21;21(26):6942–6950. doi: 10.1021/bi00269a050. [DOI] [PubMed] [Google Scholar]
- Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., Glenner G. G. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell. 1983 Dec;35(2 Pt 1):349–358. doi: 10.1016/0092-8674(83)90168-x. [DOI] [PubMed] [Google Scholar]
- Tao T., Nelson J. H., Cantor C. R. Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromidee. Biochemistry. 1970 Sep 1;9(18):3514–3524. doi: 10.1021/bi00820a004. [DOI] [PubMed] [Google Scholar]
- Urbanke C., Römer R., Maass G. The binding of ethidium bromide to different conformations of tRNA. Unfolding of tertiary structure. Eur J Biochem. 1973 Mar 15;33(3):511–516. doi: 10.1111/j.1432-1033.1973.tb02710.x. [DOI] [PubMed] [Google Scholar]




