Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 May;85(10):3595–3598. doi: 10.1073/pnas.85.10.3595

Roles for chloride ion and fibrinogen in the activation of [Glu1]plasminogen in human plasma.

P J Gaffney 1, T Urano 1, V S de Serrano 1, M Mahmoud-Alexandroni 1, A R Metzger 1, F J Castellino 1
PMCID: PMC280260  PMID: 3130631

Abstract

Using two-dimensional immunoelectrophoresis and an antibody to alpha 2-antiplasmin, we assessed the plasmin generated in serum under different conditions as the plasmin-alpha 2-antiplasmin complex. Activation in serum of human [Glu1]plasminogen ([Glu1]Pg) by recombinant tissue plasminogen activator was inhibited by the normal serum levels of Cl- and was enhanced by physiological levels of fibrinogen in the presence or absence of Cl-. These results agree with the recognized ability of Cl- to induce a conformation in [Glu1]Pg less favorable for its activation than the conformation that results without Cl-. The enhancing effect of fibrinogen surpassed the inhibitory effect of Cl- over a wide range of recombinant tissue plasminogen activator concentrations in physiological serum. Lesser inhibition by Cl- was seen in a purified clot-lysis system, suggesting that [Glu1]Pg conformation when attached to soluble fibrin matrix was less affected by the anion. The data regarding the roles of circulating fibrinogen and Cl- in controlling the plasma level of activated [Glu1]Pg have important implications in thrombolytic therapy with recombinant tissue plasminogen activator.

Full text

PDF
3595

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brockway W. J., Castellino F. J. Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys. 1972 Jul;151(1):194–199. doi: 10.1016/0003-9861(72)90488-2. [DOI] [PubMed] [Google Scholar]
  2. Chibber B. A., Morris J. P., Castellino F. J. Effects of human fibrinogen and its cleavage products on activation of human plasminogen by streptokinase. Biochemistry. 1985 Jul 2;24(14):3429–3434. doi: 10.1021/bi00335a006. [DOI] [PubMed] [Google Scholar]
  3. Chibber B. A., Radek J. T., Morris J. P., Castellino F. J. Rapid formation of an anion-sensitive active site in stoichiometric complexes of streptokinase and human [Glu1]plasminogen. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1237–1241. doi: 10.1073/pnas.83.5.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clemmensen I., Thorsen S., Müllertz S., Petersen L. C. Properties of three different molecular forms of the alpha 2 plasmin inhibitor. Eur J Biochem. 1981 Nov;120(1):105–112. doi: 10.1111/j.1432-1033.1981.tb05675.x. [DOI] [PubMed] [Google Scholar]
  5. Collen D. On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost. 1980 Jun 18;43(2):77–89. [PubMed] [Google Scholar]
  6. Gaffney P. J., Lane D. A., Brasher M. Soluble high-molecular-weight E fragments in the plasmin-induced degradation products of cross-linked human fibrin. Clin Sci Mol Med. 1975 Aug;49(2):149–156. doi: 10.1042/cs0490149. [DOI] [PubMed] [Google Scholar]
  7. Garcia Frade L. J., Poole S., Hanley S., Creighton L. J., Curtis A. D., Gaffney P. J. Bioavailability in rats of human recombinant tissue plasminogen activator after subcutaneous and intramuscular injection. Thromb Haemost. 1986 Dec 15;56(3):299–301. [PubMed] [Google Scholar]
  8. Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
  9. Thorsen S. Differences in the binding to fibrin of native plasminogen and plasminogen modified by proteolytic degradation. Influence of omega-aminocarboxylic acids. Biochim Biophys Acta. 1975 May 30;393(1):55–65. doi: 10.1016/0005-2795(75)90216-0. [DOI] [PubMed] [Google Scholar]
  10. Urano T., Chibber B. A., Castellino F. J. The reciprocal effects of epsilon-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human urokinase. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4031–4034. doi: 10.1073/pnas.84.12.4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Urano T., Sator de Serrano V., Chibber B. A., Castellino F. J. The control of the urokinase-catalyzed activation of human glutamic acid 1-plasminogen by positive and negative effectors. J Biol Chem. 1987 Nov 25;262(33):15959–15964. [PubMed] [Google Scholar]
  12. Urano T., Urano S., Castellino F. J. Reaction of tissue-type plasminogen activator with 4-methylumbelliferyl-p-guanidinobenzoate hydrochloride. Biochem Biophys Res Commun. 1988 Jan 15;150(1):45–51. doi: 10.1016/0006-291x(88)90484-6. [DOI] [PubMed] [Google Scholar]
  13. Violand B. N., Byrne R., Castellino F. J. The effect of alpha-,omega-amino acids on human plasminogen structure and activation. J Biol Chem. 1978 Aug 10;253(15):5395–5401. [PubMed] [Google Scholar]
  14. Zamarron C., Lijnen H. R., Collen D. Influence of exogenous and endogenous tissue-type plasminogen activator on the lysability of clots in a plasma milieu in vitro. Thromb Res. 1984 Aug 1;35(3):335–345. doi: 10.1016/0049-3848(84)90364-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES