Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 May;85(10):3618–3622. doi: 10.1073/pnas.85.10.3618

Single K+ channels activated by D2 dopamine receptors in acutely dissociated neurons from rat corpus striatum.

J E Freedman 1, F F Weight 1
PMCID: PMC280265  PMID: 2453064

Abstract

Corpus striatum neurons acutely dissociated from the brains of young adult rats had membrane surfaces suitable for G omega-seal recording. Whole-cell current-clamp and voltage-clamp recordings indicated that the cells remained electrically excitable after dissociation. Cell-attached recordings frequently revealed single-channel openings in the presence of dopamine or of the D2 dopamine agonist quinpirole. Channel openings were rarely or never observed in the absence of drugs or in the presence of quinpirole plus the dopamine antagonist haloperidol. The D2 antagonist spiperone was more potent at blocking the appearance of the channel than was the D1 antagonist SCH-23390. The channel reversal potential varied with the extracellular K+ concentration as predicted by the Nernst equation. The channel current-voltage relationship was linear, with a conductance of approximately equal to 85 pS in the presence of 140 mM KCl. These results are consistent with the opening of single K+ channels following D2 dopamine receptor activation.

Full text

PDF
3618

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop G. A., Chang H. T., Kitai S. T. Morphological and physiological properties of neostriatal neurons: an intracellular horseradish peroxidase study in the rat. Neuroscience. 1982 Jan;7(1):179–191. doi: 10.1016/0306-4522(82)90159-2. [DOI] [PubMed] [Google Scholar]
  2. Bradshaw C. M., Sheridan R. D., Szabadi E. Excitatory neuronal responses to dopamine in the cerebral cortex: involvement of D2 but not D1 dopamine receptors. Br J Pharmacol. 1985 Oct;86(2):483–490. doi: 10.1111/j.1476-5381.1985.tb08918.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bunney B. S., Walters J. R., Roth R. H., Aghajanian G. K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther. 1973 Jun;185(3):560–571. [PubMed] [Google Scholar]
  4. Creese I., Sibley D. R., Hamblin M. W., Leff S. E. The classification of dopamine receptors: relationship to radioligand binding. Annu Rev Neurosci. 1983;6:43–71. doi: 10.1146/annurev.ne.06.030183.000355. [DOI] [PubMed] [Google Scholar]
  5. Gray R., Johnston D. Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature. 1987 Jun 18;327(6123):620–622. doi: 10.1038/327620a0. [DOI] [PubMed] [Google Scholar]
  6. Hahn R. A., MacDonald B. R. Primate cardiovascular responses mediated by dopamine receptors: effects of N,N-di-n-propyldopamine and LY171555. J Pharmacol Exp Ther. 1984 Apr;229(1):132–138. [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Heyer E. J. Dopamine antagonists reduce spontaneous electrical activity in cultured mammalian neurons from ventral mesencephalon. Brain Res. 1986 Sep 24;382(2):404–408. doi: 10.1016/0006-8993(86)91353-3. [DOI] [PubMed] [Google Scholar]
  9. Huguenard J. R., Alger B. E. Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J Neurophysiol. 1986 Jul;56(1):1–18. doi: 10.1152/jn.1986.56.1.1. [DOI] [PubMed] [Google Scholar]
  10. Iorio L. C., Barnett A., Leitz F. H., Houser V. P., Korduba C. A. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther. 1983 Aug;226(2):462–468. [PubMed] [Google Scholar]
  11. Kay A. R., Miles R., Wong R. K. Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J Neurosci. 1986 Oct;6(10):2915–2920. doi: 10.1523/JNEUROSCI.06-10-02915.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kay A. R., Wong R. K. Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods. 1986 May;16(3):227–238. doi: 10.1016/0165-0270(86)90040-3. [DOI] [PubMed] [Google Scholar]
  13. Lacey M. G., Mercuri N. B., North R. A. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol. 1987 Nov;392:397–416. doi: 10.1113/jphysiol.1987.sp016787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohno Y., Sasa M., Takaori S. Coexistence of inhibitory dopamine D-1 and excitatory D-2 receptors on the same caudate nucleus neurons. Life Sci. 1987 May 11;40(19):1937–1945. doi: 10.1016/0024-3205(87)90054-3. [DOI] [PubMed] [Google Scholar]
  15. Pardo J. V., Creese I., Burt D. R., Snyder S. H. Ontogenesis of dopamine receptor binding in the corpus striatum of the rat. Brain Res. 1977 Apr 15;125(2):376–382. doi: 10.1016/0006-8993(77)90633-3. [DOI] [PubMed] [Google Scholar]
  16. Seeman P. Brain dopamine receptors. Pharmacol Rev. 1980 Sep;32(3):229–313. [PubMed] [Google Scholar]
  17. Skirboll L. R., Grace A. A., Bunney B. S. Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science. 1979 Oct 5;206(4414):80–82. doi: 10.1126/science.482929. [DOI] [PubMed] [Google Scholar]
  18. Stefanini E., Marchisio A. M., Devoto P., Vernaleone F., Collu R., Spano P. F. Sodium-dependent interaction of benzamides with dopamine receptors. Brain Res. 1980 Sep 29;198(1):229–233. doi: 10.1016/0006-8993(80)90360-1. [DOI] [PubMed] [Google Scholar]
  19. Stoof J. C., Kebabian J. W. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 1984 Dec 3;35(23):2281–2296. doi: 10.1016/0024-3205(84)90519-8. [DOI] [PubMed] [Google Scholar]
  20. Uchimura N., Higashi H., Nishi S. Hyperpolarizing and depolarizing actions of dopamine via D-1 and D-2 receptors on nucleus accumbens neurons. Brain Res. 1986 Jun 11;375(2):368–372. doi: 10.1016/0006-8993(86)90760-2. [DOI] [PubMed] [Google Scholar]
  21. White F. J., Wang R. Y. Electrophysiological evidence for the existence of both D-1 and D-2 dopamine receptors in the rat nucleus accumbens. J Neurosci. 1986 Jan;6(1):274–280. doi: 10.1523/JNEUROSCI.06-01-00274.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES