Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 May;85(10):3648–3652. doi: 10.1073/pnas.85.10.3648

Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina.

E E Baetge 1, R R Behringer 1, A Messing 1, R L Brinster 1, R D Palmiter 1
PMCID: PMC280271  PMID: 2835776

Abstract

The human gene for phenylethanolamine N-methyltransferase (hPNMT), responsible for the conversion of norepinephrine to epinephrine, has been cloned and the complete nucleotide sequence has been determined. The structural gene consists of three exons and two introns spanning approximately equal to 2100 base pairs. Transgenic mice containing the hPNMT gene with either 2 or 8 kilobases of 5'-flanking sequence were produced and resulted in expression of hPNMT mRNA in the adrenal gland and eye. A chimeric gene consisting of 2 kilobases of the hPNMT 5'-flanking region fused to the simian virus 40 early region also resulted in tumor (T) antigen mRNA expression in adrenal glands and eyes; furthermore, immunocytochemistry showed that tumor antigen was localized in nuclei of adrenal medullary cells and cells of the inner nuclear cell layer of the retina, prominent sites of epinephrine synthesis. These results indicate that the enhancer(s) for appropriate expression of the hPNMT gene in these cell types is in the 2-kilobase 5'-flanking region of the human gene.

Full text

PDF
3648

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J. Purification and properties of phenylethanolamine-N-methyl transferase. J Biol Chem. 1962 May;237:1657–1660. [PubMed] [Google Scholar]
  2. Baetge E. E., Suh Y. H., Joh T. H. Complete nucleotide and deduced amino acid sequence of bovine phenylethanolamine N-methyltransferase: partial amino acid homology with rat tyrosine hydroxylase. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5454–5458. doi: 10.1073/pnas.83.15.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  4. Bohn M. C., Goldstein M., Black I. B. Expression and development of phenylethanolamine N-methyltransferase (PNMT) in rat brain stem: studies with glucocorticoids. Dev Biol. 1986 Mar;114(1):180–193. doi: 10.1016/0012-1606(86)90394-5. [DOI] [PubMed] [Google Scholar]
  5. Bohn M. C., Goldstein M., Black I. B. Expression of phenylethanolamine N-methyltransferase in rat sympathetic ganglia and extra-adrenal chromaffin tissue. Dev Biol. 1982 Feb;89(2):299–308. doi: 10.1016/0012-1606(82)90319-0. [DOI] [PubMed] [Google Scholar]
  6. Bohn M. C., Goldstein M., Black I. B. Role of glucocorticoids in expression of the adrenergic phenotype in rat embryonic adrenal gland. Dev Biol. 1981 Feb;82(1):1–10. doi: 10.1016/0012-1606(81)90423-1. [DOI] [PubMed] [Google Scholar]
  7. Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
  8. Brinster R. L., Chen H. Y., Trumbauer M. E., Yagle M. K., Palmiter R. D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4438–4442. doi: 10.1073/pnas.82.13.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brinster R. L., Palmiter R. D. Introduction of genes into the germ line of animals. Harvey Lect. 1984 1985;80:1–38. [PMC free article] [PubMed] [Google Scholar]
  10. Chen C. W., Thomas C. A., Jr Recovery of DNA segments from agarose gels. Anal Biochem. 1980 Jan 15;101(2):339–341. doi: 10.1016/0003-2697(80)90197-9. [DOI] [PubMed] [Google Scholar]
  11. Ciaranello R. D., Jacobowitz D., Axelrod J. Effect of dexamethasone on phenylethanolamine N-methyltransferase in chromaffin tissue of the neonatal rat. J Neurochem. 1973 Mar;20(3):799–805. doi: 10.1111/j.1471-4159.1973.tb00040.x. [DOI] [PubMed] [Google Scholar]
  12. Coupland R. E., Selby J. E. The blood supply of the mammalian adrenal medulla: a comparative study. J Anat. 1976 Dec;122(Pt 3):539–551. [PMC free article] [PubMed] [Google Scholar]
  13. Durnam D. M., Palmiter R. D. A practical approach for quantitating specific mRNAs by solution hybridization. Anal Biochem. 1983 Jun;131(2):385–393. doi: 10.1016/0003-2697(83)90188-4. [DOI] [PubMed] [Google Scholar]
  14. Eränkö L., Eränkö O. Effect of hydrocortisone on histochemically demonstrable catecholamines in the sympathetic ganglia and extra-adrenal chromaffin tissue of the rat. Acta Physiol Scand. 1972 Jan;84(1):125–133. doi: 10.1111/j.1748-1716.1972.tb05161.x. [DOI] [PubMed] [Google Scholar]
  15. Eränkö O., Pickel V. M., Härkönen M., Eränko L., Joh T. H., Reis D. J. Effect of hydrocortisone on catecholamines and the enzymes synthesizing them in the developing sympathetic ganglion. Histochem J. 1982 May;14(3):461–478. doi: 10.1007/BF01011857. [DOI] [PubMed] [Google Scholar]
  16. Fiers W., Contreras R., Haegemann G., Rogiers R., Van de Voorde A., Van Heuverswyn H., Van Herreweghe J., Volckaert G., Ysebaert M. Complete nucleotide sequence of SV40 DNA. Nature. 1978 May 11;273(5658):113–120. doi: 10.1038/273113a0. [DOI] [PubMed] [Google Scholar]
  17. Foster G. A., Hökfelt T., Coyle J. T., Goldstein M. Immunohistochemical evidence for phenylethanolamine-N-methyltransferase-positive/tyrosine hydroxylase-negative neurones in the retina and the posterior hypothalamus of the rat. Brain Res. 1985 Mar 18;330(1):183–188. doi: 10.1016/0006-8993(85)90025-3. [DOI] [PubMed] [Google Scholar]
  18. Hadjiconstantinou M., Mariani A. P., Panula P., Joh T. H., Neff N. H. Immunohistochemical evidence for epinephrine-containing retinal amacrine cells. Neuroscience. 1984 Oct;13(2):547–551. doi: 10.1016/0306-4522(84)90247-1. [DOI] [PubMed] [Google Scholar]
  19. Harlow E., Crawford L. V., Pim D. C., Williamson N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol. 1981 Sep;39(3):861–869. doi: 10.1128/jvi.39.3.861-869.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  21. Howe P. R., Costa M., Furness J. B., Chalmers J. P. Simultaneous demonstration of phenylethanolamine N-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience. 1980;5(12):2229–2238. doi: 10.1016/0306-4522(80)90139-6. [DOI] [PubMed] [Google Scholar]
  22. Karin M., Haslinger A., Holtgreve H., Richards R. I., Krauter P., Westphal H. M., Beato M. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature. 1984 Apr 5;308(5959):513–519. doi: 10.1038/308513a0. [DOI] [PubMed] [Google Scholar]
  23. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  24. Lindsay S., Bird A. P. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. 1987 May 28-Jun 3Nature. 327(6120):336–338. doi: 10.1038/327336a0. [DOI] [PubMed] [Google Scholar]
  25. Lloyd R. V., Sisson J. C., Shapiro B., Verhofstad A. A. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol. 1986 Oct;125(1):45–54. [PMC free article] [PubMed] [Google Scholar]
  26. Margolis F. L., Roffi J., Jost A. Norepinephrine methylation in fetal rat adrenals. Science. 1966 Oct 14;154(3746):275–276. doi: 10.1126/science.154.3746.275. [DOI] [PubMed] [Google Scholar]
  27. Moore D. D., Marks A. R., Buckley D. I., Kapler G., Payvar F., Goodman H. M. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor. Proc Natl Acad Sci U S A. 1985 Feb;82(3):699–702. doi: 10.1073/pnas.82.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ornitz D. M., Hammer R. E., Messing A., Palmiter R. D., Brinster R. L. Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science. 1987 Oct 9;238(4824):188–193. doi: 10.1126/science.2821617. [DOI] [PubMed] [Google Scholar]
  29. Palmiter R. D., Behringer R. R., Quaife C. J., Maxwell F., Maxwell I. H., Brinster R. L. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell. 1987 Jul 31;50(3):435–443. doi: 10.1016/0092-8674(87)90497-1. [DOI] [PubMed] [Google Scholar]
  30. Palmiter R. D., Brinster R. L. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. doi: 10.1146/annurev.ge.20.120186.002341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Palmiter R. D., Chen H. Y., Brinster R. L. Differential regulation of metallothionein-thymidine kinase fusion genes in transgenic mice and their offspring. Cell. 1982 Jun;29(2):701–710. doi: 10.1016/0092-8674(82)90186-6. [DOI] [PubMed] [Google Scholar]
  32. Payvar F., DeFranco D., Firestone G. L., Edgar B., Wrange O., Okret S., Gustafsson J. A., Yamamoto K. R. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell. 1983 Dec;35(2 Pt 1):381–392. doi: 10.1016/0092-8674(83)90171-x. [DOI] [PubMed] [Google Scholar]
  33. Renkawitz R., Schütz G., von der Ahe D., Beato M. Sequences in the promoter region of the chicken lysozyme gene required for steroid regulation and receptor binding. Cell. 1984 Jun;37(2):503–510. doi: 10.1016/0092-8674(84)90380-5. [DOI] [PubMed] [Google Scholar]
  34. Ross C. A., Ruggiero D. A., Meeley M. P., Park D. H., Joh T. H., Reis D. J. A new group of neurons in hypothalamus containing phenylethanolamine N-methyltransferase (PNMT) but not tyrosine hydroxylase. Brain Res. 1984 Jul 23;306(1-2):349–353. doi: 10.1016/0006-8993(84)90385-8. [DOI] [PubMed] [Google Scholar]
  35. Ruggiero D. A., Ross C. A., Anwar M., Park D. H., Joh T. H., Reis D. J. Distribution of neurons containing phenylethanolamine N-methyltransferase in medulla and hypothalamus of rat. J Comp Neurol. 1985 Sep 8;239(2):127–154. doi: 10.1002/cne.902390202. [DOI] [PubMed] [Google Scholar]
  36. Saavedra J. M., Palkovits M., Brownstein M. J., Axelrod J. Localisation of phenylethanolamine N-methyl transferase in the rat brain nuclei. Nature. 1974 Apr 19;248(5450):695–696. doi: 10.1038/248695a0. [DOI] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scheidereit C., Geisse S., Westphal H. M., Beato M. The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. Nature. 1983 Aug 25;304(5928):749–752. doi: 10.1038/304749a0. [DOI] [PubMed] [Google Scholar]
  39. Scholnick S. B., Bray S. J., Morgan B. A., McCormick C. A., Hirsh J. CNS and hypoderm regulatory elements of the Drosophila melanogaster dopa decarboxylase gene. Science. 1986 Nov 21;234(4779):998–1002. doi: 10.1126/science.3095924. [DOI] [PubMed] [Google Scholar]
  40. Slater E. P., Rabenau O., Karin M., Baxter J. D., Beato M. Glucocorticoid receptor binding and activation of a heterologous promoter by dexamethasone by the first intron of the human growth hormone gene. Mol Cell Biol. 1985 Nov;5(11):2984–2992. doi: 10.1128/mcb.5.11.2984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  42. Teitelman G., Joh T. H., Park D., Brodsky M., New M., Reis D. J. Expression of the adrenergic phenotype in cultured fetal adrenal medullary cells: role of intrinsic and extrinsic factors. Dev Biol. 1982 Feb;89(2):450–459. doi: 10.1016/0012-1606(82)90333-5. [DOI] [PubMed] [Google Scholar]
  43. Verhofstad A. A., Hökfelt T., Goldstein M., Steinbusch H. W., Joosten H. W. Appearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla: an immunohistochemical study in the rat. Cell Tissue Res. 1979 Aug 3;200(1):1–13. doi: 10.1007/BF00236882. [DOI] [PubMed] [Google Scholar]
  44. Versaux-Botteri C., Martin-Martinelli E., Nguyen-Legros J., Geffard M., Vigny A., Denoroy L. Regional specialization of the rat retina: catecholamine-containing amacrine cell characterization and distribution. J Comp Neurol. 1986 Jan 15;243(3):422–433. doi: 10.1002/cne.902430311. [DOI] [PubMed] [Google Scholar]
  45. Wurtman R. J., Pohorecky L. A., Baliga B. S. Adrenocortical control of the biosynthesis of epinephrine and proteins in the adrenal medulla. Pharmacol Rev. 1972 Jun;24(2):411–426. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES