Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(11):3810–3814. doi: 10.1073/pnas.85.11.3810

Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24

Eric W Triplett 1
PMCID: PMC280309  PMID: 16593933

Abstract

Rhizobium leguminosarum bv. trifolii T24 produces a potent anti-rhizobial compound, trifolitoxin, and exclusively nodulates clover roots when in mixed inoculum with trifolitoxin-sensitive strains of R. leguminosarum bv. trifolii [Schwinghamer, E. A. & Belkengren R. P. (1968) Arch. Mikrobiol. 64, 130-145]. In the present study, the isolation of trifolitoxin production and resistance genes is described. A cosmid genomic library of T24 was prepared in pLAFR3. No trifolitoxin expression was observed in the resulting Escherichia coli cosmid clones. One cosmid clone was identified that restored trifolitoxin production and nodulation competitiveness in three nonproducing mutants of T24. The recombinant plasmid from this cosmid clone, pTFX1, also conferred trifolitoxin production and resistance when transferred to symbiotically effective strains of R. leguminosarum bvs. trifolii, phaseoli, and viceae. Cosmid pTFX1 also conferred expression of trifolitoxin production when present in strains of Rhizobium meliloti and Agrobacterium tumefaciens. No trifolitoxin expression was observed in strains of Bradyrhizobium japonicum or Rhizobium sp. (cowpea) with pTFX1. Southern blot analysis with a biotinylated pTFX1 probe did not suggest that these genes were plasmid-borne. Transfer of pTFX1 to T24 or its derivatives resulted in 6- to 10-fold higher level of trifolitoxin production than wild-type T24.

Keywords: trifolitoxin, rhizobial antagonism, microbial ecology

Full text

PDF
3810

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender C. L., Cooksey D. A. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol. 1987 Feb;169(2):470–474. doi: 10.1128/jb.169.2.470-474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dowling D. N., Broughton W. J. Competition for nodulation of legumes. Annu Rev Microbiol. 1986;40:131–157. doi: 10.1146/annurev.mi.40.100186.001023. [DOI] [PubMed] [Google Scholar]
  3. Dowling D. N., Samrey U., Stanley J., Broughton W. J. Cloning of Rhizobium leguminosarum genes for competitive nodulation blocking on peas. J Bacteriol. 1987 Mar;169(3):1345–1348. doi: 10.1128/jb.169.3.1345-1348.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Farrand S. K., Slota J. E., Shim J. S., Kerr A. Tn5 insertions in the agrocin 84 plasmid: the conjugal nature of pAgK84 and the locations of determinants for transfer and agrocin 84 production. Plasmid. 1985 Mar;13(2):106–117. doi: 10.1016/0147-619x(85)90063-0. [DOI] [PubMed] [Google Scholar]
  5. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  7. Haugland R. A., Cantrell M. A., Beaty J. S., Hanus F. J., Russell S. A., Evans H. J. Characterization of Rhizobium japonicum hydrogen uptake genes. J Bacteriol. 1984 Sep;159(3):1006–1012. doi: 10.1128/jb.159.3.1006-1012.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Materon L. A., Hagedorn C. Competitiveness of Rhizobium trifolii Strains Associated with Red Clover (Trifolium pratense L.) in Mississippi Soils. Appl Environ Microbiol. 1982 Nov;44(5):1096–1101. doi: 10.1128/aem.44.5.1096-1101.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. May S. N., Bohlool B. B. Competition Among Rhizobium leguminosarum Strains for Nodulation of Lentils (Lens esculenta). Appl Environ Microbiol. 1983 Mar;45(3):960–965. doi: 10.1128/aem.45.3.960-965.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McLoughlin T. J., Merlo A. O., Satola S. W., Johansen E. Isolation of competition-defective mutants of Rhizobium fredii. J Bacteriol. 1987 Jan;169(1):410–413. doi: 10.1128/jb.169.1.410-413.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Plazinski J., Cen Y. H., Rolfe B. G. General method for the identification of plasmid species in fast-growing soil microorganisms. Appl Environ Microbiol. 1985 Apr;49(4):1001–1003. doi: 10.1128/aem.49.4.1001-1003.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schwinghamer E. A., Belkengren R. P. Inhibition of rhizobia by a strain of Rhizobeium trifolii: some properties of the antibiotic and of the strain. Arch Mikrobiol. 1968;64(2):130–145. doi: 10.1007/BF00406972. [DOI] [PubMed] [Google Scholar]
  13. Selvaraj G., Iyer V. N. Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol. 1983 Dec;156(3):1292–1300. doi: 10.1128/jb.156.3.1292-1300.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Triplett E. W., Barta T. M. Trifolitoxin Production and Nodulation Are Necessary for the Expression of Superior Nodulation Competitiveness by Rhizobium leguminosarum bv. trifolii Strain T24 on Clover. Plant Physiol. 1987 Oct;85(2):335–342. doi: 10.1104/pp.85.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES