Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(11):3820–3824. doi: 10.1073/pnas.85.11.3820

Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes.

Y Oron 1, B Gillo 1, M C Gershengorn 1
PMCID: PMC280311  PMID: 2836859

Abstract

Xenopus laevis oocytes are giant cells suitable for studies of plasma membrane receptors and signal transduction pathways because of their capacity to express receptors after injection of heterologous mRNA. We studied depolarizing chloride currents evoked by acetylcholine (AcCho) in native oocytes ("intrinsic AcCho response"), by thyrotropin-releasing hormone (TRH) in oocytes injected with pituitary (GH3) cell RNA ("acquired TRH response"), and by AcCho in oocytes injected with rat brain RNA ("acquired AcCho response"). We found differences in the latencies and patterns of these responses and in the responsiveness to these agonists when applied to the animal or vegetal hemisphere, even though all of the responses are mediated by the same signal transduction pathway. The common intrinsic response to AcCho is characterized by minimal latency (0.86 +/- 0.05 sec), a rapid, transient depolarization followed by a distinct prolonged depolarization, and larger responses obtained after AcCho application at the vegetal rather than the animal hemisphere. By contrast, the acquired responses to TRH and AcCho are characterized by much longer latencies, 9.3 +/- 1.0 and 5.5 +/- 0.8 sec, respectively, and large rapid depolarizations followed by less distinct prolonged depolarizations. The responsiveness on the two hemispheres to TRH and AcCho in mRNA-injected oocytes is opposite to that for the common intrinsic AcCho response in that there is a much greater response when agonist is applied at the animal rather than the vegetal hemisphere. We suggest that the differences in these responses are caused by differences in the intrinsic properties of these receptors. Because different receptors appear to be segregated in the same oocyte in distinct localizations, Xenopus oocytes may be an important model system in which to study receptor sorting in polarized cells.

Full text

PDF
3820

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner T. I., Buckley N. J., Young A. C., Brann M. R. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987 Jul 31;237(4814):527–532. doi: 10.1126/science.3037705. [DOI] [PubMed] [Google Scholar]
  2. Dascal N., Gillo B., Lass Y. Role of calcium mobilization in mediation of acetylcholine-evoked chloride currents in Xenopus laevis oocytes. J Physiol. 1985 Sep;366:299–313. doi: 10.1113/jphysiol.1985.sp015799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dascal N., Landau E. M., Lass Y. Xenopus oocyte resting potential, muscarinic responses and the role of calcium and guanosine 3',5'-cyclic monophosphate. J Physiol. 1984 Jul;352:551–574. doi: 10.1113/jphysiol.1984.sp015310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dierks P., van Ooyen A., Mantei N., Weissmann C. DNA sequences preceding the rabbit beta-globin gene are required for formation in mouse L cells of beta-globin RNA with the correct 5' terminus. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1411–1415. doi: 10.1073/pnas.78.3.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gundersen C. B., Miledi R., Parker I. Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes. 1984 Mar 29-Apr 4Nature. 308(5958):421–424. doi: 10.1038/308421a0. [DOI] [PubMed] [Google Scholar]
  6. Houamed K. M., Bilbe G., Smart T. G., Constanti A., Brown D. A., Barnard E. A., Richards B. M. Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA. 1984 Jul 26-Aug 1Nature. 310(5975):318–321. doi: 10.1038/310318a0. [DOI] [PubMed] [Google Scholar]
  7. Kusano K., Miledi R., Stinnakre J. Acetylcholine receptors in the oocyte membrane. Nature. 1977 Dec 22;270(5639):739–741. doi: 10.1038/270739a0. [DOI] [PubMed] [Google Scholar]
  8. Kusano K., Miledi R., Stinnakre J. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J Physiol. 1982 Jul;328:143–170. doi: 10.1113/jphysiol.1982.sp014257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lotan I., Dascal N., Cohen S., Lass Y. Adenosine-induced slow ionic currents in the Xenopus oocyte. Nature. 1982 Aug 5;298(5874):572–574. doi: 10.1038/298572a0. [DOI] [PubMed] [Google Scholar]
  10. Miledi R., Parker I., Sumikawa K. Recording of single gamma-aminobutyrate- and acetylcholine-activated receptor channels translated by exogenous mRNA in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):481–484. doi: 10.1098/rspb.1983.0053. [DOI] [PubMed] [Google Scholar]
  11. Oron Y., Dascal N., Nadler E., Lupu M. Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature. 1985 Jan 10;313(5998):141–143. doi: 10.1038/313141a0. [DOI] [PubMed] [Google Scholar]
  12. Oron Y., Gillo B., Straub R. E., Gershengorn M. C. Mechanism of membrane electrical response to thyrotropin-releasing hormone in Xenopus oocytes injected with GH3 pituitary cell messenger ribonucleic acid. Mol Endocrinol. 1987 Dec;1(12):918–925. doi: 10.1210/mend-1-12-918. [DOI] [PubMed] [Google Scholar]
  13. Oron Y., Straub R. E., Traktman P., Gershengorn M. C. Decreased TRH receptor mRNA activity precedes homologous downregulation: assay in oocytes. Science. 1987 Dec 4;238(4832):1406–1408. doi: 10.1126/science.2825350. [DOI] [PubMed] [Google Scholar]
  14. Robinson K. R. Electrical currents through full-grown and maturing Xenopus oocytes. Proc Natl Acad Sci U S A. 1979 Feb;76(2):837–841. doi: 10.1073/pnas.76.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sumikawa K., Houghton M., Emtage J. S., Richards B. M., Barnard E. A. Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature. 1981 Aug 27;292(5826):862–864. doi: 10.1038/292862a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES