Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(11):3875–3879. doi: 10.1073/pnas.85.11.3875

Characterization of mutagen-activated cellular oncogenes that confer anchorage independence to human fibroblasts and tumorigenicity to NIH 3T3 cells: sequence analysis of an enzymatically amplified mutant HRAS allele.

C W Stevens 1, T H Manoharan 1, W E Fahl 1
PMCID: PMC280322  PMID: 3131765

Abstract

Treatment of diploid human fibroblasts with an alkylating mutagen has been shown to induce stable, anchorage-independent cell populations at frequencies (11 X 10(-4) consistent with an activating mutation. After treatment of human foreskin fibroblasts with the mutagen benzo[a]pyrene (+/-)anti- 7,8-dihydrodiol 9,10-epoxide and selection in soft agar, 17 anchorage-independent clones were isolated and expanded, and their cellular DNA was used to cotransfect NIH 3T3 cells along with pSV2neo. DNA from 11 of the 17 clones induced multiple NIH 3T3 cell tumors in recipient nude mice. Southern blot analyses showed the presence of human Alu repetitive sequences in all of the NIH 3T3 tumor cell DNAs. Intact, human HRAS sequences were observed in 2 of the 11 tumor groups, whereas no hybridization was detected when human KRAS or NRAS probes were used. Slow-migrating ras p21 proteins, consistent with codon 12 mutations, were observed i in the same two NIH 3T3 tumor cell groups that contained the human HRAS bands. Genomic DNA from one of these two human anchorage-independent cell populations (clone 21A) was used to enzymatically amplify a portion of exon 1 of the HRAS gene. Direct sequence analysis of the amplified DNA indicated equal presence of a wild-type (GGC) and mutant (GTC) allele of the HRAS gene. The results demonstrate that exposure of normal human cells to a common environmental mutagen yields HRAS GC----TA codon 12 transversions that have been commonly observed in human tumors. This oncogene as well as yet to be identified oncogene are also shown to stably confer anchorage-independence to human cells.

Full text

PDF
3875

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett J. C., Crawford B. D., Mixter L. O., Schechtman L. M., Ts'o P. O., Pollack R. Correlation of in vitro growth properties and tumorigenicity of Syrian hamster cell lines. Cancer Res. 1979 May;39(5):1504–1510. [PubMed] [Google Scholar]
  2. Bellett A. J., Younghusband H. B. Spontaneous, mutagen-induced and adenovirus-induced anchorage independent tumorigenic variants of mouse cells. J Cell Physiol. 1979 Oct;101(1):33–47. doi: 10.1002/jcp.1041010106. [DOI] [PubMed] [Google Scholar]
  3. Bouck N., di Mayorca G. Somatic mutation as the basis for malignant transformation of BHK cells by chemical carcinogens. Nature. 1976 Dec 23;264(5588):722–727. doi: 10.1038/264722a0. [DOI] [PubMed] [Google Scholar]
  4. Brown R., Brady G., Mattern J., Schütz G. An alternative assay system for the detection of transforming genes. Carcinogenesis. 1984 Oct;5(10):1323–1328. doi: 10.1093/carcin/5.10.1323. [DOI] [PubMed] [Google Scholar]
  5. Carney D. N., Gazdar A. F., Minna J. D. Positive correlation between histological tumor involvement and generation of tumor cell colonies in agarose in specimens taken directly from patients with small-cell carcinoma of the lung. Cancer Res. 1980 Jun;40(6):1820–1823. [PubMed] [Google Scholar]
  6. Colburn N. H., Bruegge W. F., Bates J. R., Gray R. H., Rossen J. D., Kelsey W. H., Shimada T. Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res. 1978 Mar;38(3):624–634. [PubMed] [Google Scholar]
  7. Eisenstadt E., Warren A. J., Porter J., Atkins D., Miller J. H. Carcinogenic epoxides of benzo[a]pyrene and cyclopenta[cd]pyrene induce base substitutions via specific transversions. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1945–1949. doi: 10.1073/pnas.79.6.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freedman V. H., Shin S. Isolation of human diploid cell variants with enhanced colony-forming efficiency in semisolid medium after a single-step chemical mutagenesis. J Natl Cancer Inst. 1977 Jun;58(6):1873–1875. doi: 10.1093/jnci/58.6.1873. [DOI] [PubMed] [Google Scholar]
  9. Hamburger A. W., Salmon S. E. Primary bioassay of human tumor stem cells. Science. 1977 Jul 29;197(4302):461–463. doi: 10.1126/science.560061. [DOI] [PubMed] [Google Scholar]
  10. Josephs S. F., Ratner L., Clarke M. F., Westin E. H., Reitz M. S., Wong-Staal F. Transforming potential of human c-sis nucleotide sequences encoding platelet-derived growth factor. Science. 1984 Aug 10;225(4662):636–639. doi: 10.1126/science.6740330. [DOI] [PubMed] [Google Scholar]
  11. Kakunaga T., Leavitt J., Hamada H. A mutation in actin associated with neoplastic transformation. Fed Proc. 1984 May 15;43(8):2275–2279. [PubMed] [Google Scholar]
  12. Kakunaga T. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1334–1338. doi: 10.1073/pnas.75.3.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lowy D. R., Willumsen B. M. The ras gene family. Cancer Surv. 1986;5(2):275–289. [PubMed] [Google Scholar]
  14. Maher V. M., Rowan L. A., Silinskas K. C., Kateley S. A., McCormick J. J. Frequency of UV-induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2613–2617. doi: 10.1073/pnas.79.8.2613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Manoharan T. H., Burgess J. A., Ho D., Newell C. L., Fahl W. E. Integration of a mutant c-Ha-ras oncogene into C3H/10T1/2 cells and its relationship to tumorigenic transformation. Carcinogenesis. 1985 Sep;6(9):1295–1301. doi: 10.1093/carcin/6.9.1295. [DOI] [PubMed] [Google Scholar]
  16. Marshall C. J., Vousden K. H., Phillips D. H. Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide. Nature. 1984 Aug 16;310(5978):586–589. doi: 10.1038/310586a0. [DOI] [PubMed] [Google Scholar]
  17. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  18. Milo G. E., Jr, DiPaolo J. A. Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment. Nature. 1978 Sep 14;275(5676):130–132. doi: 10.1038/275130a0. [DOI] [PubMed] [Google Scholar]
  19. Newbold R. F., Overell R. W., Connell J. R. Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature. 1982 Oct 14;299(5884):633–635. doi: 10.1038/299633a0. [DOI] [PubMed] [Google Scholar]
  20. Ozols R. F., Willson J. K., Grotzinger K. R., Young R. C. Cloning of human ovarian cancer cells in soft agar from malignant and peritoneal washings. Cancer Res. 1980 Aug;40(8 Pt 1):2743–2747. [PubMed] [Google Scholar]
  21. Pavelic Z. P., Slocum H. K., Rustum Y. M., Creaven P. J., Karakousis C., Takita H. Colony growth in soft agar of human melanoma, sarcoma, and lung carcinoma cells disaggregated by mechanical and enzymatic methods. Cancer Res. 1980 Jul;40(7):2160–2164. [PubMed] [Google Scholar]
  22. Pavelic Z. P., Slocum H. K., Rustum Y. M., Creaven P. J., Nowak N. J., Karakousis C., Takita H., Mittelman A. Growth of cell colonies in soft agar from biopsies of different human solid tumors. Cancer Res. 1980 Nov;40(11):4151–4158. [PubMed] [Google Scholar]
  23. Rubin C. M., Houck C. M., Deininger P. L., Friedmann T., Schmid C. W. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature. 1980 Mar 27;284(5754):372–374. doi: 10.1038/284372a0. [DOI] [PubMed] [Google Scholar]
  24. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  25. Stevens C. W., Bouck N., Burgess J. A., Fahl W. E. Benzo[a]pyrene diol-epoxides: different mutagenic efficiency in human and bacterial cells. Mutat Res. 1985 Oct;152(1):5–14. doi: 10.1016/0027-5107(85)90040-5. [DOI] [PubMed] [Google Scholar]
  26. Stevens C. W., Brondyk W. H., Burgess J. A., Manoharan T. H., Häne B. G., Fahl W. E. Partially transformed, anchorage-independent human diploid fibroblasts result from overexpression of the c-sis oncogene: mitogenic activity of an apparent monomeric platelet-derived growth factor 2 species. Mol Cell Biol. 1988 May;8(5):2089–2096. doi: 10.1128/mcb.8.5.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tabin C. J., Bradley S. M., Bargmann C. I., Weinberg R. A., Papageorge A. G., Scolnick E. M., Dhar R., Lowy D. R., Chang E. H. Mechanism of activation of a human oncogene. Nature. 1982 Nov 11;300(5888):143–149. doi: 10.1038/300143a0. [DOI] [PubMed] [Google Scholar]
  28. Thomassen D. G., DeMars R. Clonal analysis of the stepwise appearance of anchorage independence and tumorigenicity in CAK, a permanent line of mouse cells. Cancer Res. 1982 Oct;42(10):4054–4063. [PubMed] [Google Scholar]
  29. Zimmerman R. J., Little J. B. Characteristics of human diploid fibroblasts transformed in vitro by chemical carcinogens. Cancer Res. 1983 May;43(5):2183–2189. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES