Abstract
Developmental aspects of an animal model of myotonia, the mouse mutant called "arrested development of righting response" (ADR phenotype), were studied. Adult ADR muscle is characterized by a low chloride conductance of the membrane, leading to hyperexcitability, and by a low parvalbumin content. The myotonic hyperexcitability (as measured by the extent of "aftercontractions") of ADR muscle increased steeply between postnatal days 9 and 18, by which time it had approached the adult level. To study the tissue autonomy of the myotonic phenotype, muscle grafts were performed in all four combinations between ADR and wildtype (WT phenotype) donors and hosts. In most experiments, the relative contributions of donor and host to the regenerated muscles were determined by an allelic marker (glucose phosphate isomerase). In WT and ADR hosts, ADR grafts showed myotonic responses that in WT nude mouse hosts were incomplete and similar to those of juvenile ADR muscle. In no case did grafts from WT donors show any myotonia. This shows that the myotonic ADR phenotype is based on an intrinsic muscle property most likely related to the plasma membrane. The parvalbumin contents of grafted muscles, when compared with those of untransplanted muscles, indicated graft-host interaction in the expression of this secondary phenotypic property.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Bryant S. H. On the repetitive discharge in myotonic muscle fibres. J Physiol. 1974 Jul;240(2):505–515. doi: 10.1113/jphysiol.1974.sp010620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aichele R., Paik H., Heller A. H. Efficacy of phenytoin, procainamide, and tocainide in murine genetic myotonia. Exp Neurol. 1985 Feb;87(2):377–381. doi: 10.1016/0014-4886(85)90228-6. [DOI] [PubMed] [Google Scholar]
- Carlson B. M. A quantitative study of muscle fiber survival and regeneration in normal, predenervated, and Marcaine-treated free muscle grafts in the rat. Exp Neurol. 1976 Sep;52(3):421–432. doi: 10.1016/0014-4886(76)90214-4. [DOI] [PubMed] [Google Scholar]
- DeCoursey T. E., Younkin S. G., Bryant S. H. Neural control of chloride conductance in rat extensor digitorum longus muscle. Exp Neurol. 1978 Sep 15;61(3):705–709. doi: 10.1016/0014-4886(78)90034-1. [DOI] [PubMed] [Google Scholar]
- Green H. J., Reichmann H., Pette D. Inter- and intraspecies comparisons of fibre type distribution and of succinate dehydrogenase activity in type I, IIA and IIB fibres of mammalian diaphragms. Histochemistry. 1984;81(1):67–73. doi: 10.1007/BF00495403. [DOI] [PubMed] [Google Scholar]
- Grounds M. D., Partridge T. A. Isoenzyme studies of whole muscle grafts and movement of muscle precursor cells. Cell Tissue Res. 1983;230(3):677–688. doi: 10.1007/BF00216211. [DOI] [PubMed] [Google Scholar]
- Heizmann C. W., Berchtold M. W. Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium. 1987 Feb;8(1):1–41. doi: 10.1016/0143-4160(87)90034-0. [DOI] [PubMed] [Google Scholar]
- Heller A. H., Eicher E. M., Hallett M., Sidman R. L. Myotonia, a new inherited muscle disease in mice. J Neurosci. 1982 Jul;2(7):924–933. doi: 10.1523/JNEUROSCI.02-07-00924.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jockusch H., Reininghaus J., Stuhlfauth I., Zippel M. Reduction of myosin-light-chain phosphorylation and of parvalbumin content in myotonic mouse muscle and its reversal by tocainide. Eur J Biochem. 1988 Jan 15;171(1-2):101–105. doi: 10.1111/j.1432-1033.1988.tb13764.x. [DOI] [PubMed] [Google Scholar]
- Leberer E., Pette D. Neural regulation of parvalbumin expression in mammalian skeletal muscle. Biochem J. 1986 Apr 1;235(1):67–73. doi: 10.1042/bj2350067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMahan U. J., Slater C. R. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J Cell Biol. 1984 Apr;98(4):1453–1473. doi: 10.1083/jcb.98.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehrke G., Brinkmeier H., Jockusch H. The myotonic mouse mutant ADR: electrophysiology of the muscle fiber. Muscle Nerve. 1988 May;11(5):440–446. doi: 10.1002/mus.880110505. [DOI] [PubMed] [Google Scholar]
- NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
- Palade P. T., Barchi R. L. Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J Gen Physiol. 1977 Mar;69(3):325–342. doi: 10.1085/jgp.69.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pestronk A., Drachman D. B. A new stain for quantitative measurement of sprouting at neuromuscular junctions. Muscle Nerve. 1978 Jan-Feb;1(1):70–74. doi: 10.1002/mus.880010110. [DOI] [PubMed] [Google Scholar]
- Peterson A. C., Frair P. M., Wong G. G. A technique for detection and relative quantitative analysis of glucosephosphate isomerase isozymes from nanogram tissue samples. Biochem Genet. 1978 Aug;16(7-8):681–690. doi: 10.1007/BF00484725. [DOI] [PubMed] [Google Scholar]
- Reichmann H., Srihari T., Pette D. Ipsi- and contralateral fibre transformations by cross-reinnervation. A principle of symmetry. Pflugers Arch. 1983 May;397(3):202–208. doi: 10.1007/BF00584358. [DOI] [PubMed] [Google Scholar]
- Reininghaus J., Füchtbauer E. M., Bertram K., Jockusch H. The myotonic mouse mutant ADR: physiological and histochemical properties of muscle. Muscle Nerve. 1988 May;11(5):433–439. doi: 10.1002/mus.880110504. [DOI] [PubMed] [Google Scholar]
- Rüdel R., Lehmann-Horn F. Membrane changes in cells from myotonia patients. Physiol Rev. 1985 Apr;65(2):310–356. doi: 10.1152/physrev.1985.65.2.310. [DOI] [PubMed] [Google Scholar]
- Schimmelpfeng J., Jockusch H., Heimann P. Increased density of satellite cells in the absence of fibre degeneration in muscle of myotonic mice. Cell Tissue Res. 1987 Aug;249(2):351–357. doi: 10.1007/BF00215519. [DOI] [PubMed] [Google Scholar]
- Stuhlfauth I., Reininghaus J., Jockusch H., Heizmann C. W. Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4814–4818. doi: 10.1073/pnas.81.15.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuji S., Tobin-Gros C. A simple silver nitrate impregnation of nerve fibres with preservation of acetylcholinesterase activity at the motor end-plate. Experientia. 1980 Nov 15;36(11):1317–1319. doi: 10.1007/BF01969611. [DOI] [PubMed] [Google Scholar]
- Watkins W. J., Watts D. C. Biological features of the new A2G--adr mouse mutant with abnormal muscle function. Lab Anim. 1984 Jan;18(1):1–6. doi: 10.1258/002367784780865036. [DOI] [PubMed] [Google Scholar]


