Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(11):3995–3999. doi: 10.1073/pnas.85.11.3995

Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes.

C A Borrebaeck 1, L Danielsson 1, S A Möller 1
PMCID: PMC280347  PMID: 3131770

Abstract

A general procedure is described for the production of human monoclonal antibodies from peripheral blood lymphocytes immunized in vitro against T-cell-dependent antigens. These lymphocytes immunized in culture were used to produce human-human or human-mouse hybridomas secreting monoclonal antibodies specific for digoxin, hemocyanin, a recombinant fragment of the gp120 envelope glycoprotein of human immunodeficiency virus (PB1), or a melanoma-associated antigen (p97). Depletion of a lysosome-rich cell population, containing large granular lymphocytes, monocytes, cytotoxic T cells, and a subset of CD8-positive T cells, was shown to be crucial before the cells could be immunized in vitro. This depletion was accomplished by treating the peripheral blood lymphocytes with the lysosomotropic agent L-leucine methyl ester. In addition, the in vitro immunization had to be supported by interleukin 2, gamma-interferon, and B-cell growth and differentiation factors, derived from irradiated, pokeweed-mitogen-stimulated human T cells. The production of human monoclonal antibodies from primary, antigen-specifically activated peripheral lymphocytes might obviate the need to immunize volunteers or patients.

Full text

PDF
3995

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai S., Yamamoto H., Itoh K., Kumagai K. Suppressive effect of human natural killer cells on pokeweed mitogen-induced B cell differentiation. J Immunol. 1983 Aug;131(2):651–657. [PubMed] [Google Scholar]
  2. Borrebaeck C. A. In vitro immunization for the production of antigen-specific lymphocyte hybridomas. Scand J Immunol. 1983 Jul;18(1):9–12. doi: 10.1111/j.1365-3083.1983.tb00829.x. [DOI] [PubMed] [Google Scholar]
  3. Borrebaeck C. A., Möller S. A. In vitro immunization. Effect of growth and differentiation factors on antigen-specific B cell activation and production of monoclonal antibodies to autologous antigens and weak immunogens. J Immunol. 1986 May 15;136(10):3710–3715. [PubMed] [Google Scholar]
  4. Butler V. P., Jr, Chen J. P. Digoxin-specific antibodies. Proc Natl Acad Sci U S A. 1967 Jan;57(1):71–78. doi: 10.1073/pnas.57.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll W. L., Thielemans K., Dilley J., Levy R. Mouse x human heterohybridomas as fusion partners with human B cell tumors. J Immunol Methods. 1986 May 1;89(1):61–72. doi: 10.1016/0022-1759(86)90032-3. [DOI] [PubMed] [Google Scholar]
  6. Danielsson L., Möller S. A., Borrebaeck C. A. Effect of cytokines on specific in vitro immunization of human peripheral B lymphocytes against T-cell dependent antigens. Immunology. 1987 May;61(1):51–55. [PMC free article] [PubMed] [Google Scholar]
  7. Fox P. C., Siraganian R. P. Multiple reactivity of monoclonal antibodies. Hybridoma. 1986 Fall;5(3):223–229. doi: 10.1089/hyb.1986.5.223. [DOI] [PubMed] [Google Scholar]
  8. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
  9. Fujinaga S., Sugano T., Matsumoto Y., Masuho Y., Mori R. Antiviral activities of human monoclonal antibodies to herpes simplex virus. J Infect Dis. 1987 Jan;155(1):45–53. doi: 10.1093/infdis/155.1.45. [DOI] [PubMed] [Google Scholar]
  10. Guilbert B., Dighiero G., Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 1982 Jun;128(6):2779–2787. [PubMed] [Google Scholar]
  11. Haskard D. O., Gul V., Archer J. R. Cross-reactivity between solid-phase immunoassay plates and intermediate filaments demonstrated by human monoclonal antibodies. J Immunol Methods. 1985 Mar 18;77(2):291–295. doi: 10.1016/0022-1759(85)90042-0. [DOI] [PubMed] [Google Scholar]
  12. Ho M. K., Rand N., Murray J., Kato K., Rabin H. In vitro immunization of human lymphocytes. I. Production of human monoclonal antibodies against bombesin and tetanus toxoid. J Immunol. 1985 Dec;135(6):3831–3838. [PubMed] [Google Scholar]
  13. James K., Bell G. T. Human monoclonal antibody production. Current status and future prospects. J Immunol Methods. 1987 Jun 26;100(1-2):5–40. doi: 10.1016/0022-1759(87)90170-0. [DOI] [PubMed] [Google Scholar]
  14. Lagacé J., Brodeur B. R. Parameters affecting in vitro immunization of human lymphocytes. J Immunol Methods. 1985 Dec 17;85(1):127–136. doi: 10.1016/0022-1759(85)90281-9. [DOI] [PubMed] [Google Scholar]
  15. Larrick J. W., Bourla J. M. Prospects for the therapeutic use of human monoclonal antibodies. J Biol Response Mod. 1986 Oct;5(5):379–393. [PubMed] [Google Scholar]
  16. Layton J. E., Uhr J. W., Pure E., Krammer P. H., Vitetta E. S. T cell-derived B cell growth (BCGF) and differentiation (BCDF) factors: suppression of the activity of BCDF mu but not BCGF by murine bone marrow cells. J Immunol. 1983 Jun;130(6):2502–2504. [PubMed] [Google Scholar]
  17. Möller S. A., Borrebaeck C. A. A filter immuno-plaque assay for the detection of antibody-secreting cells in vitro. J Immunol Methods. 1985 May 23;79(2):195–204. doi: 10.1016/0022-1759(85)90099-7. [DOI] [PubMed] [Google Scholar]
  18. Olsson L., Kronstrøm H., Cambon-De Mouzon A., Honsik C., Brodin T., Jakobsen B. Antibody producing human-human hybridomas. I. Technical aspects. J Immunol Methods. 1983 Jun 24;61(1):17–32. doi: 10.1016/0022-1759(83)90004-2. [DOI] [PubMed] [Google Scholar]
  19. Putney S. D., Matthews T. J., Robey W. G., Lynn D. L., Robert-Guroff M., Mueller W. T., Langlois A. J., Ghrayeb J., Petteway S. R., Jr, Weinhold K. J. HTLV-III/LAV-neutralizing antibodies to an E. coli-produced fragment of the virus envelope. Science. 1986 Dec 12;234(4782):1392–1395. doi: 10.1126/science.2431482. [DOI] [PubMed] [Google Scholar]
  20. Rose T. M., Plowman G. D., Teplow D. B., Dreyer W. J., Hellström K. E., Brown J. P. Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1261–1265. doi: 10.1073/pnas.83.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scahill S. J., Devos R., Van der Heyden J., Fiers W. Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4654–4658. doi: 10.1073/pnas.80.15.4654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strike L. E., Devens B. H., Lundak R. L. Production of human-human hybridomas secreting antibody to sheep erythrocytes after in vitro immunization. J Immunol. 1984 Apr;132(4):1798–1803. [PubMed] [Google Scholar]
  23. Sugano T., Matsumoto Y., Miyamoto C., Masuho Y. Hybridomas producing human monoclonal antibodies against varicella-zoster virus. Eur J Immunol. 1987 Mar;17(3):359–364. doi: 10.1002/eji.1830170309. [DOI] [PubMed] [Google Scholar]
  24. Targan S., Brieva J., Newman W., Stevens R. Is the NK lytic process involved in the mechanism of NK suppression of antibody-producing cells? J Immunol. 1985 Feb;134(2):666–669. [PubMed] [Google Scholar]
  25. Thiele D. L., Kurosaka M., Lipsky P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol. 1983 Nov;131(5):2282–2290. [PubMed] [Google Scholar]
  26. Thiele D. L., Lipsky P. E. Leu-Leu-OMe sensitivity of human activated killer cells: delineation of a distinct class of cytotoxic T lymphocytes capable of lysing tumor targets. J Immunol. 1986 Aug 15;137(4):1399–1406. [PubMed] [Google Scholar]
  27. Thiele D. L., Lipsky P. E. Modulation of human natural killer cell function by L-leucine methyl ester: monocyte-dependent depletion from human peripheral blood mononuclear cells. J Immunol. 1985 Feb;134(2):786–793. [PubMed] [Google Scholar]
  28. Thiele D. L., Lipsky P. E. Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from L-leucine methyl ester by monocytes or polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2468–2472. doi: 10.1073/pnas.82.8.2468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thiele D. L., Lipsky P. E. The immunosuppressive activity of L-leucyl-L-leucine methyl ester: selective ablation of cytotoxic lymphocytes and monocytes. J Immunol. 1986 Feb 1;136(3):1038–1048. [PubMed] [Google Scholar]
  30. Wasserman R. L., Budens R. D., Thaxton E. S. In vitro stimulation prior to fusion generates antigen-binding human-human hybridomas. J Immunol Methods. 1986 Nov 6;93(2):275–283. doi: 10.1016/0022-1759(86)90200-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES