Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(11):4066–4070. doi: 10.1073/pnas.85.11.4066

Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts.

E DiCicco-Bloom 1, I B Black 1
PMCID: PMC280362  PMID: 2897692

Abstract

While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. We have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase [L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [3H]thymidine into their nuclei. We used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [3H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis, revealing a 4-fold insulin stimulation with an ED50 of 100 ng/ml. Insulin-like growth factor I was 100-fold more potent than insulin, whereas insulin-like growth factor II was less potent, suggesting that insulin growth factor type I receptors mediated the mitogenic responses. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. Our observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain.

Full text

PDF
4066

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angevine J. B., Jr Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol. 1970 Jun;139(2):129–187. doi: 10.1002/cne.901390202. [DOI] [PubMed] [Google Scholar]
  2. Barakat I., Courageot J., Devilliers G., Sensenbrenner M. Effects of chick brain extract on the proliferation of chick neuroblasts cultured in media supplemented with low and high serum concentrations. Neurochem Res. 1984 Feb;9(2):263–272. doi: 10.1007/BF00964174. [DOI] [PubMed] [Google Scholar]
  3. Bassas L., de Pablo F., Lesniak M. A., Roth J. Ontogeny of receptors for insulin-like peptides in chick embryo tissues: early dominance of insulin-like growth factor over insulin receptors in brain. Endocrinology. 1985 Dec;117(6):2321–2329. doi: 10.1210/endo-117-6-2321. [DOI] [PubMed] [Google Scholar]
  4. Black I. B. Regulation of autonomic development. Annu Rev Neurosci. 1978;1:183–214. doi: 10.1146/annurev.ne.01.030178.001151. [DOI] [PubMed] [Google Scholar]
  5. Bloom E. M., Black I. B. Metabolic requirements for differentiation of embryonic sympathetic ganglia cultured in the absence of exogenous nerve growth factor. Dev Biol. 1979 Feb;68(2):568–578. doi: 10.1016/0012-1606(79)90227-6. [DOI] [PubMed] [Google Scholar]
  6. Bottenstein J. E., Sato G. H. Fibronectin and polylysine requirement for proliferation of neuroblastoma cells in defined medium. Exp Cell Res. 1980 Oct;129(2):361–366. doi: 10.1016/0014-4827(80)90504-2. [DOI] [PubMed] [Google Scholar]
  7. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carr V. M., Simpson S. B., Jr Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development. J Comp Neurol. 1978 Dec 15;182(4):727–739. doi: 10.1002/cne.901820410. [DOI] [PubMed] [Google Scholar]
  9. Cassel D., Wood P. M., Bunge R. P., Glaser L. Mitogenicity of brain axolemma membranes and soluble factors for dorsal root ganglion Schwann cells. J Cell Biochem. 1982;18(4):433–445. doi: 10.1002/jcb.1982.240180405. [DOI] [PubMed] [Google Scholar]
  10. Cochard P., Goldstein M., Black I. B. Initial development of the noradrenergic phenotype in autonomic neuroblasts of the rat embryo in vivo. Dev Biol. 1979 Jul;71(1):100–114. doi: 10.1016/0012-1606(79)90085-x. [DOI] [PubMed] [Google Scholar]
  11. Cochard P., Paulin D. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci. 1984 Aug;4(8):2080–2094. doi: 10.1523/JNEUROSCI.04-08-02080.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cone C. D., Jr, Cone C. M. Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science. 1976 Apr 9;192(4235):155–158. doi: 10.1126/science.56781. [DOI] [PubMed] [Google Scholar]
  13. Coughlin M. D., Bloom E. M., Black I. B. Characterization of a neuronal growth factor from mouse heart-cell-conditioned medium. Dev Biol. 1981 Feb;82(1):56–68. doi: 10.1016/0012-1606(81)90428-0. [DOI] [PubMed] [Google Scholar]
  14. D'Ercole A. J., Applewhite G. T., Underwood L. E. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol. 1980 Mar 15;75(2):315–328. doi: 10.1016/0012-1606(80)90166-9. [DOI] [PubMed] [Google Scholar]
  15. D'Ercole A. J., Stiles A. D., Underwood L. E. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci U S A. 1984 Feb;81(3):935–939. doi: 10.1073/pnas.81.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dreyfus C. F., Markey K. A., Goldstein M., Black I. B. Development of catecholaminergic phenotypic characters in the mouse locus coeruleus in vivo and in culture. Dev Biol. 1983 May;97(1):48–58. doi: 10.1016/0012-1606(83)90062-3. [DOI] [PubMed] [Google Scholar]
  17. Enberg G., Tham A., Sara V. R. The influence of purified somatomedins and insulin on foetal rat brain DNA synthesis in vitro. Acta Physiol Scand. 1985 Oct;125(2):305–308. doi: 10.1111/j.1748-1716.1985.tb07720.x. [DOI] [PubMed] [Google Scholar]
  18. Goustin A. S., Leof E. B., Shipley G. D., Moses H. L. Growth factors and cancer. Cancer Res. 1986 Mar;46(3):1015–1029. [PubMed] [Google Scholar]
  19. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  20. Jonakait G. M., Markey K. A., Goldstein M., Dreyfus C. F., Black I. B. Selective expression of high-affinity uptake of catecholamines by transiently catecholaminergic cells of the rat embryo: studies in vivo and in vitro. Dev Biol. 1985 Mar;108(1):6–17. doi: 10.1016/0012-1606(85)90003-x. [DOI] [PubMed] [Google Scholar]
  21. Kriegstein A., Dichter M. A. Neuron generation in dissociated cell cultures from fetal rat cerebral cortex. Brain Res. 1984 Mar 12;295(1):184–189. doi: 10.1016/0006-8993(84)90829-1. [DOI] [PubMed] [Google Scholar]
  22. LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
  23. Landmesser L., Pilar G. Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol. 1974 Sep;241(3):715–736. doi: 10.1113/jphysiol.1974.sp010680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lauder J. M. Hormonal and humoral influences on brain development. Psychoneuroendocrinology. 1983;8(2):121–155. doi: 10.1016/0306-4530(83)90053-7. [DOI] [PubMed] [Google Scholar]
  25. Lenoir D., Honegger P. Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Brain Res. 1983 Apr;283(2-3):205–213. doi: 10.1016/0165-3806(83)90177-3. [DOI] [PubMed] [Google Scholar]
  26. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  27. Markey K. A., Kondo H., Shenkman L., Goldstein M. Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol. 1980 Jan;17(1):79–85. [PubMed] [Google Scholar]
  28. Mirsky R., Jessen K. R. The biology of non-myelin-forming Schwann cells. Ann N Y Acad Sci. 1986;486:132–146. doi: 10.1111/j.1749-6632.1986.tb48069.x. [DOI] [PubMed] [Google Scholar]
  29. Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
  30. Pettmann B., Louis J. C., Sensenbrenner M. Morphological and biochemical maturation of neurones cultured in the absence of glial cells. Nature. 1979 Oct 4;281(5730):378–380. doi: 10.1038/281378a0. [DOI] [PubMed] [Google Scholar]
  31. Raizada M. K., Yang J. W., Fellows R. E. Binding of [125I]insulin to specific receptors and stimulation of nucleotide incorporation in cells cultured from rat brain. Brain Res. 1980 Nov 3;200(2):389–400. doi: 10.1016/0006-8993(80)90929-4. [DOI] [PubMed] [Google Scholar]
  32. Raju T., Bignami A., Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981 Jul 30;85(2):344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
  33. Rothman T. P., Specht L. A., Gershon M. D., Joh T. H., Teitelman G., Pickel V. M., Reis D. J. Catecholamine biosynthetic enzymes are expressed in replicating cells of the peripheral but not the central nervous system. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6221–6225. doi: 10.1073/pnas.77.10.6221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
  35. Sara V. R., Hall K., Misaki M., Fryklund L., Christensen N., Wetterberg L. Ontogenesis of somatomedin and insulin receptors in the human fetus. J Clin Invest. 1983 May;71(5):1084–1094. doi: 10.1172/JCI110858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sensenbrenner M., Wittendorp E., Barakat I., Rechenmann R. V. Autoradiographic study of proliferating brain cells in culture. Dev Biol. 1980 Mar 15;75(2):268–277. doi: 10.1016/0012-1606(80)90162-1. [DOI] [PubMed] [Google Scholar]
  37. Soares M. B., Ishii D. N., Efstratiadis A. Developmental and tissue-specific expression of a family of transcripts related to rat insulin-like growth factor II mRNA. Nucleic Acids Res. 1985 Feb 25;13(4):1119–1134. doi: 10.1093/nar/13.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sobue G., Kreider B., Asbury A., Pleasure D. Specific and potent mitogenic effect of axolemmal fraction on Schwann cells from rat sciatic nerves in serum-containing and defined media. Brain Res. 1983 Dec 5;280(2):263–275. doi: 10.1016/0006-8993(83)90056-2. [DOI] [PubMed] [Google Scholar]
  39. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  40. Teitelman G., Baker H., Joh T. H., Reis D. J. Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: possible role of tissue environment. Proc Natl Acad Sci U S A. 1979 Jan;76(1):509–513. doi: 10.1073/pnas.76.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  42. Van Schravendijk C. F., Hooghe-Peters E. L., Van den Brande J. L., Pipeleers D. G. Receptors for insulin-like growth factors and insulin on murine fetal cortical brain cells. Biochem Biophys Res Commun. 1986 Feb 26;135(1):228–238. doi: 10.1016/0006-291x(86)90967-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES