Abstract
An excess of the tryptophan metabolite quinolinic acid in the brain has been hypothetically related to the pathogenesis of Huntington disease. Quinolinate's immediate biosynthetic enzyme, 3-hydroxyanthranilate oxygenase (EC 1.13.11.6), has now been detected in human brain tissue. The activity of 3-hydroxyanthranilate oxygenase is increased in Huntington disease brains as compared to control brains. The increment is particularly pronounced in the striatum, which is known to exhibit the most prominent nerve-cell loss in Huntington disease. Thus, the Huntington disease brain has a disproportionately high capability to produce the endogenous "excitotoxin" quinolinic acid. This finding may be of relevance for clinical, neuropathologic, and biochemical features associated with Huntington disease.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beal M. F., Kowall N. W., Ellison D. W., Mazurek M. F., Swartz K. J., Martin J. B. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature. 1986 May 8;321(6066):168–171. doi: 10.1038/321168a0. [DOI] [PubMed] [Google Scholar]
- Bird E. D., Iversen L. L. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain. 1974 Sep;97(3):457–472. doi: 10.1093/brain/97.1.457. [DOI] [PubMed] [Google Scholar]
- Ferrante R. J., Kowall N. W., Beal M. F., Richardson E. P., Jr, Bird E. D., Martin J. B. Selective sparing of a class of striatal neurons in Huntington's disease. Science. 1985 Nov 1;230(4725):561–563. doi: 10.1126/science.2931802. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Collins J. F., Schwarcz R. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology. 1983 Dec;22(12A):1331–1342. doi: 10.1016/0028-3908(83)90221-6. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Okuno E., Brougher D. S., Schwarcz R. A radioenzymatic assay for quinolinic acid. Anal Biochem. 1986 Oct;158(1):98–103. doi: 10.1016/0003-2697(86)90595-6. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Whetsell W. O., Jr, Bird E. D., Schwarcz R. Quinolinic acid phosphoribosyltransferase in human and rat brain: activity in Huntington's disease and in quinolinate-lesioned rat striatum. Brain Res. 1985 Jun 17;336(2):207–214. doi: 10.1016/0006-8993(85)90647-x. [DOI] [PubMed] [Google Scholar]
- Foster A. C., White R. J., Schwarcz R. Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro. J Neurochem. 1986 Jul;47(1):23–30. doi: 10.1111/j.1471-4159.1986.tb02826.x. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Zinkand W. C., Schwarcz R. Quinolinic acid phosphoribosyltransferase in rat brain. J Neurochem. 1985 Feb;44(2):446–454. doi: 10.1111/j.1471-4159.1985.tb05435.x. [DOI] [PubMed] [Google Scholar]
- GHOLSON R. K., UEDA I., OGASAWARA N., HENDERSON L. M. THE ENZYMATIC CONVERSION OF QUINOLINATE TO NICOTINIC ACID MONONUCLEOTIDE IN MAMMALIAN LIVER. J Biol Chem. 1964 Apr;239:1208–1214. [PubMed] [Google Scholar]
- Gusella J. F., Wexler N. S., Conneally P. M., Naylor S. L., Anderson M. A., Tanzi R. E., Watkins P. C., Ottina K., Wallace M. R., Sakaguchi A. Y. A polymorphic DNA marker genetically linked to Huntington's disease. Nature. 1983 Nov 17;306(5940):234–238. doi: 10.1038/306234a0. [DOI] [PubMed] [Google Scholar]
- Gál E. M., Sherman A. D. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res. 1980 Mar;5(3):223–239. doi: 10.1007/BF00964611. [DOI] [PubMed] [Google Scholar]
- HENDERSON L. M., HIRSCH H. M. Quinolinic acid metabolism; urinary excretion by the rat following tryptophan and 3-hydroxyanthranilic acid administration. J Biol Chem. 1949 Dec;181(2):667–675. [PubMed] [Google Scholar]
- HENDERSON L. M. Quinolinic acid metabolism; replacement of nicotinic acid for the growth of the rat and Neurospora. J Biol Chem. 1949 Dec;181(2):677–685. [PubMed] [Google Scholar]
- Heyes M. P., Garnett E. S., Brown R. R. Normal excretion of quinolinic acid in Huntington's disease. Life Sci. 1985 Nov 11;37(19):1811–1816. doi: 10.1016/0024-3205(85)90223-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Martin J. B. Huntington's disease: new approaches to an old problem. The Robert Wartenberg lecture. Neurology. 1984 Aug;34(8):1059–1072. doi: 10.1212/wnl.34.8.1059. [DOI] [PubMed] [Google Scholar]
- McGeer P. L., McGeer E. G., Fibiger H. C. Choline acetylase and glutamic acid decarboxylase in Huntington's chorea. A preliminary study. Neurology. 1973 Sep;23(9):912–917. doi: 10.1212/wnl.23.9.912. [DOI] [PubMed] [Google Scholar]
- NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. I. ENZYMIC SYNTHESIS OF NIACIN RIBONUCLEOTIDES FROM 3-HYDROXYANTHRANILIC ACID IN MAMMALIAN TISSUES. J Biol Chem. 1963 Oct;238:3369–3377. [PubMed] [Google Scholar]
- Okuno E., Köhler C., Schwarcz R. Rat 3-hydroxyanthranilic acid oxygenase: purification from the liver and immunocytochemical localization in the brain. J Neurochem. 1987 Sep;49(3):771–780. doi: 10.1111/j.1471-4159.1987.tb00960.x. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Foster A. C., French E. D., Whetsell W. O., Jr, Köhler C. Excitotoxic models for neurodegenerative disorders. Life Sci. 1984 Jul 2;35(1):19–32. doi: 10.1016/0024-3205(84)90148-6. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Meldrum B. Excitatory aminoacid antagonists provide a therapeutic approach to neurological disorders. Lancet. 1985 Jul 20;2(8447):140–143. doi: 10.1016/s0140-6736(85)90238-7. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Whetsell W. O., Jr, Mangano R. M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983 Jan 21;219(4582):316–318. doi: 10.1126/science.6849138. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Whetsell W. O., Jr Post-mortem high affinity glutamate uptake in human brain. Neuroscience. 1982 Jul;7(7):1771–1778. doi: 10.1016/0306-4522(82)90034-3. [DOI] [PubMed] [Google Scholar]
- Stone T. W., Perkins M. N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol. 1981 Jul 10;72(4):411–412. doi: 10.1016/0014-2999(81)90587-2. [DOI] [PubMed] [Google Scholar]
- Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D., Richardson E. P., Jr Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol. 1985 Nov;44(6):559–577. doi: 10.1097/00005072-198511000-00003. [DOI] [PubMed] [Google Scholar]
- Wexler N. S., Young A. B., Tanzi R. E., Travers H., Starosta-Rubinstein S., Penney J. B., Snodgrass S. R., Shoulson I., Gomez F., Ramos Arroyo M. A. Homozygotes for Huntington's disease. Nature. 1987 Mar 12;326(6109):194–197. doi: 10.1038/326194a0. [DOI] [PubMed] [Google Scholar]
- Wolfensberger M., Amsler U., Cuénod M., Foster A. C., Whetsell W. O., Jr, Schwarcz R. Identification of quinolinic acid in rat and human brain tissue. Neurosci Lett. 1983 Nov 11;41(3):247–252. doi: 10.1016/0304-3940(83)90458-5. [DOI] [PubMed] [Google Scholar]
