Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(11):4095–4098. doi: 10.1073/pnas.85.11.4095

Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide.

M T Schiavone 1, R A Santos 1, K B Brosnihan 1, M C Khosla 1, C M Ferrario 1
PMCID: PMC280369  PMID: 3375255

Abstract

We have recently shown that hydrolysis of labeled angiotensin I in canine brainstem homogenate causes a rapid accumulation of the heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Although this angiotensin fragment has no vasopressor activity, its consistent generation in brain homogenate led us to study its potential neurosecretory effects in the rat hypothalamo-neurohypophysial system (HNS) in vitro. Ang-(1-7) or angiotensin II (Ang II) was added to HNS perifusate in concentrations of 0.04, 0.4, and 4 microM, and release of arginine vasopressin (AVP) during each treatment was quantified as a percentage of the AVP release detected in the preceding collection period. Base-line release of AVP averaged 281 +/- 47 pg per 15 min (mean +/- SEM) in HNS explants (five experiments, five explants per chamber) perifused in Krebs solution at 37 degrees C, after a 1-hr equilibration period. At 0.04 microM, Ang II or Ang-(1-7) did not stimulate AVP release. Ang II increased AVP release over the control value by 172% +/- 44% and 268% +/- 66% at 0.4 and 4 microM, respectively; the same concentrations of Ang-(1-7) increased AVP release by 134% +/- 12% and 216% +/- 45%. The responses to Ang II and Ang-(1-7) at the highest concentration were both significant (P less than 0.05), and comparison by two-way analysis of variance indicated that Ang II and Ang-(1-7) were equipotent in stimulating AVP release over the range of concentrations studied. In the presence of the competitive Ang II antagonist [Sar1,Thr8]Ang II (20 microM), the release of AVP increased approximately equal to 2-fold. Neither Ang II nor Ang-(1-7) (4 microM) caused a further enhancement of AVP release in the presence of [Sar1,Thr8]Ang II. These data suggest that a hydrophobic residue in position 8 of the angiotensin peptide is not essential for activation of angiotensin receptors in the rat HNS. Moreover, the equipotence of Ang II and Ang-(1-7) indicates that Ang-(1-7) may participate in the control of AVP release.

Full text

PDF
4095

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard M., Simonnet G., Dupouy B., Vincent J. D. Angiotensin II inactivation process in cultured mouse spinal cord cells. J Neurochem. 1987 May;48(5):1553–1559. doi: 10.1111/j.1471-4159.1987.tb05700.x. [DOI] [PubMed] [Google Scholar]
  2. Benarroch E. E., Pirola C. J., Alvarez A. L., Nahmod V. E. Serotonergic and noradrenergic mechanisms involved in the cardiovascular effects of angiotensin II injected into the anterior hypothalamic preoptic region of rats. Neuropharmacology. 1981 Jan;20(1):9–13. doi: 10.1016/0028-3908(81)90035-6. [DOI] [PubMed] [Google Scholar]
  3. Bonjour J. P., Malvin R. L. Stimulation of ADH release by the renin-angiotensin system. Am J Physiol. 1970 Jun;218(6):1555–1559. doi: 10.1152/ajplegacy.1970.218.6.1555. [DOI] [PubMed] [Google Scholar]
  4. Bravo E. L., Khosla M. C., Bumpus F. M. Vascular and adrenocortical responses to a specific antagonist of angiotensin II. Am J Physiol. 1975 Jan;228(1):110–114. doi: 10.1152/ajplegacy.1975.228.1.110. [DOI] [PubMed] [Google Scholar]
  5. Bumpus F. M. Mechanisms and sites of action of newer angiotensin agonists and antagonists in terms of activity and receptor. Fed Proc. 1977 Jul;36(8):2128–2132. [PubMed] [Google Scholar]
  6. Chappell M. C., Brosnihan K. B., Welches W. R., Ferrario C. M. Characterization by high performance liquid chromatography of angiotensin peptides in the plasma and cerebrospinal fluid of the dog. Peptides. 1987 Sep-Oct;8(5):939–942. doi: 10.1016/0196-9781(87)90084-2. [DOI] [PubMed] [Google Scholar]
  7. Crofton J. T., Share L., Shade R. E., Allen C., Tarnowski D. Vasopressin in the rat with spontaneous hypertension. Am J Physiol. 1978 Oct;235(4):H361–H366. doi: 10.1152/ajpheart.1978.235.4.H361. [DOI] [PubMed] [Google Scholar]
  8. Epstein A. N., Fitzsimons J. T., Rolls B. J. Drinking induced by injection of angiotensin into the rain of the rat. J Physiol. 1970 Sep;210(2):457–474. doi: 10.1113/jphysiol.1970.sp009220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrario C. M., Gildenberg P. L., McCubbin J. W. Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res. 1972 Mar;30(3):257–262. doi: 10.1161/01.res.30.3.257. [DOI] [PubMed] [Google Scholar]
  10. Fitzsimons J. T. The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat's diencephalon. J Physiol. 1971 Apr;214(2):295–303. doi: 10.1113/jphysiol.1971.sp009433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson D. C., Ryan J. W. Degradation of angiotensin II by a carboxypeptidase of rabbit liver. Biochim Biophys Acta. 1968 Jun 26;160(2):196–203. doi: 10.1016/0005-2795(68)90087-1. [DOI] [PubMed] [Google Scholar]
  12. Kono T., Taniguchi A., Imura H., Oseko F., Khosla M. C. Biological activities of angiotensin II-(1-6)-hexapeptide and angiotensin II-(1-7)-heptapeptide in man. Life Sci. 1986 Apr 21;38(16):1515–1519. doi: 10.1016/0024-3205(86)90565-5. [DOI] [PubMed] [Google Scholar]
  13. Kono T., Taniguchi A., Imura H., Oseko F., Khosla M. C. Relative biological activities of Asn1-,Val5-angiotensin II, Ile5-angiotensin II and Sar1-angiotensin II in man. Life Sci. 1985 Jul 29;37(4):365–369. doi: 10.1016/0024-3205(85)90507-7. [DOI] [PubMed] [Google Scholar]
  14. Levens N. R., Peach M. J., Carey R. M., Poat J. A., Munday K. A. Stimulation of intestinal sodium and water transport in vivo by angiotensin II and analogs. Endocrinology. 1980 Dec;107(6):1946–1953. doi: 10.1210/endo-107-6-1946. [DOI] [PubMed] [Google Scholar]
  15. Mendelsohn F. A., Quirion R., Saavedra J. M., Aguilera G., Catt K. J. Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1575–1579. doi: 10.1073/pnas.81.5.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peach M. J., Bumpus F. M., Khairallah P. A. Release of adrenal catecholamines by angiotensin I. J Pharmacol Exp Ther. 1971 Feb;176(2):366–376. [PubMed] [Google Scholar]
  17. Peach M. J., Levens N. R. Molecular approaches to the study of angiotensin receptors. Adv Exp Med Biol. 1980;130:171–194. doi: 10.1007/978-1-4615-9173-3_6. [DOI] [PubMed] [Google Scholar]
  18. REGOLI D., VANE J. R. A SENSITIVE METHOD FOR THE ASSAY OF ANGIOTENSIN. Br J Pharmacol Chemother. 1964 Oct;23:351–359. doi: 10.1111/j.1476-5381.1964.tb01591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schiavone M. T., Brosnihan K. B., Husain A., Ferrario C. M. Basal and potassium-evoked release of angiotensin II from the rat hypothalamus. Brain Res. 1986 Nov 5;397(1):193–196. doi: 10.1016/0006-8993(86)91386-7. [DOI] [PubMed] [Google Scholar]
  20. Sladek C. D., Blair M. L., Ramsay D. J. Further studies on the role of angiotensin in the osmotic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology. 1982 Aug;111(2):599–607. doi: 10.1210/endo-111-2-599. [DOI] [PubMed] [Google Scholar]
  21. Sladek C. D., Joynt R. J. Angiotensin stimulation of vasopressin release from the rat hypothalamo-neurohypophyseal system in organ culture. Endocrinology. 1979 Jan;104(1):148–153. doi: 10.1210/endo-104-1-148. [DOI] [PubMed] [Google Scholar]
  22. Sladek C. D., Joynt R. J. Role of angiotensin in the osmotic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology. 1980 Jan;106(1):173–178. doi: 10.1210/endo-106-1-173. [DOI] [PubMed] [Google Scholar]
  23. Sladek C. D., Knigge K. M. Cholinergic stimulation of vasopressin release from the rat hypothalamo-neurohypophyseal system. Endocrinology. 1977 Aug;101(2):411–420. doi: 10.1210/endo-101-2-411. [DOI] [PubMed] [Google Scholar]
  24. Speth R. C., Wamsley J. K., Gehlert D. R., Chernicky C. L., Barnes K. L., Ferrario C. M. Angiotensin II receptor localization in the canine CNS. Brain Res. 1985 Feb 4;326(1):137–143. doi: 10.1016/0006-8993(85)91392-7. [DOI] [PubMed] [Google Scholar]
  25. Spinedi E., Rodriguez G. Angiotensin II and adrenocorticotropin release: mediation by endogenous corticotropin-releasing factor. Endocrinology. 1986 Sep;119(3):1397–1402. doi: 10.1210/endo-119-3-1397. [DOI] [PubMed] [Google Scholar]
  26. Tonnaer J. A., Engels G. M., Wiegant V. M., Burbach J. P., De Jong W., De Wied D. Proteolytic conversion of angiotensins in rat brain tissue. Eur J Biochem. 1983 Mar 15;131(2):415–421. doi: 10.1111/j.1432-1033.1983.tb07279.x. [DOI] [PubMed] [Google Scholar]
  27. Turker R. K., Yamamoto M. Y., Khairallah P. A., Bumpus F. M. Competative antagonism of 8-ala-angiotensin II to angiotensins I and II on isolated rabbit aorta and rat colon. Eur J Pharmacol. 1971;15(3):285–291. doi: 10.1016/0014-2999(71)90094-x. [DOI] [PubMed] [Google Scholar]
  28. Wilk S., Orlowski M. Inhibition of rabbit brain prolyl endopeptidase by n-benzyloxycarbonyl-prolyl-prolinal, a transition state aldehyde inhibitor. J Neurochem. 1983 Jul;41(1):69–75. doi: 10.1111/j.1471-4159.1983.tb11815.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES