Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(12):4280–4284. doi: 10.1073/pnas.85.12.4280

Probing the salt bridge in the dihydrofolate reductase-methotrexate complex by using the coordinate-coupled free-energy perturbation method.

U C Singh 1
PMCID: PMC280412  PMID: 3380791

Abstract

The importance of the ionic interaction due to the formation of the salt bridge between the Asp-27 and the pteridine ring in Escherichia coli dihydrofolate reductase-methotrexate complex has been studied by using the free-energy perturbation method. The calculation suggests that the ion-pair contribution to the binding energy is insignificant, as the enzyme surroundings do not stabilize the salt bridge to the extent of the desolvation of the charged groups. The activation barrier for the proton exchange between the pteridine ring and the Asp-27 is calculated to be 20.1 kcal/mol (1 cal = 4.184 J) by using the coordinate-coupled perturbation method, implying that this may be a channel to the proton exchange from the pteridine ring to the solvent. The Gibbs-energy difference of binding between the Asn-27 and Ser-27 is calculated to be 3.2 kcal/mol and is mainly due to the electrostatic interactions.

Full text

PDF
4280

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bash P. A., Singh U. C., Brown F. K., Langridge R., Kollman P. A. Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science. 1987 Jan 30;235(4788):574–576. doi: 10.1126/science.3810157. [DOI] [PubMed] [Google Scholar]
  2. Bash P. A., Singh U. C., Langridge R., Kollman P. A. Free energy calculations by computer simulation. Science. 1987 May 1;236(4801):564–568. doi: 10.1126/science.3576184. [DOI] [PubMed] [Google Scholar]
  3. Bevan A. W., Roberts G. C., Feeney J., Kuyper L. 1H and 15N NMR studies of protonation and hydrogen-bonding in the binding of trimethoprim to dihydrofolate reductase. Eur Biophys J. 1985;11(4):211–218. doi: 10.1007/BF00261997. [DOI] [PubMed] [Google Scholar]
  4. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  5. Cocco L., Groff J. P., Temple C., Jr, Montgomery J. A., London R. E., Matwiyoff N. A., Blakley R. L. Carbon-13 nuclear magnetic resonance study of protonation of methotrexate and aminopterin bound to dihydrofolate reductase. Biochemistry. 1981 Jul 7;20(14):3972–3978. doi: 10.1021/bi00517a005. [DOI] [PubMed] [Google Scholar]
  6. Cocco L., Roth B., Temple C., Jr, Montgomery J. A., London R. E., Blakley R. L. Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase. Arch Biochem Biophys. 1983 Oct 15;226(2):567–577. doi: 10.1016/0003-9861(83)90326-0. [DOI] [PubMed] [Google Scholar]
  7. Erickson J. S., Mathews C. K. Spectral changes associated with binding of folate compounds to bacteriophage T4 dihydrofolate reductase. J Biol Chem. 1972 Sep 25;247(18):5661–5667. [PubMed] [Google Scholar]
  8. Hood K., Roberts G. C. Ultraviolet difference-spectroscopic studies of substrate and inhibitor binding to Lactobacillus casei dihydrofolate reductase. Biochem J. 1978 May 1;171(2):357–366. doi: 10.1042/bj1710357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Howell E. E., Villafranca J. E., Warren M. S., Oatley S. J., Kraut J. Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis. Science. 1986 Mar 7;231(4742):1123–1128. doi: 10.1126/science.3511529. [DOI] [PubMed] [Google Scholar]
  10. London R. E., Howell E. E., Warren M. S., Kraut J., Blakley R. L. Nuclear magnetic resonance study of the state of protonation of inhibitors bound to mutant dihydrofolate reductase lacking the active-site carboxyl. Biochemistry. 1986 Nov 4;25(22):7229–7235. doi: 10.1021/bi00370a069. [DOI] [PubMed] [Google Scholar]
  11. Montgomery J. A., Elliott R. D., Straight S. L., Temple C., Jr Deaza aalogues of amethopterin (methotrexate). Ann N Y Acad Sci. 1971 Nov 30;186:227–234. doi: 10.1111/j.1749-6632.1971.tb46976.x. [DOI] [PubMed] [Google Scholar]
  12. Rao S. N., Singh U. C., Bash P. A., Kollman P. A. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin. Nature. 1987 Aug 6;328(6130):551–554. doi: 10.1038/328551a0. [DOI] [PubMed] [Google Scholar]
  13. Stone S. R., Morrison J. F. The pH-dependence of the binding of dihydrofolate and substrate analogues to dihydrofolate reductase from Escherichia coli. Biochim Biophys Acta. 1983 Jun 29;745(3):247–258. doi: 10.1016/0167-4838(83)90056-0. [DOI] [PubMed] [Google Scholar]
  14. Subramanian S., Kaufman B. T. Interaction of methotrexate, folates, and pyridine nucleotides with dihydrofolate reductase: calorimetric and spectroscopic binding studies. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3201–3205. doi: 10.1073/pnas.75.7.3201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Taira K., Benkovic S. J. Evaluation of the importance of hydrophobic interactions in drug binding to dihydrofolate reductase. J Med Chem. 1988 Jan;31(1):129–137. doi: 10.1021/jm00396a019. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES