Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jun;85(12):4365–4368. doi: 10.1073/pnas.85.12.4365

Production of oxidative DNA damage during the metabolic activation of benzo[a]pyrene in human mammary epithelial cells correlates with cell killing.

S A Leadon 1, M R Stampfer 1, J Bartley 1
PMCID: PMC280429  PMID: 3380798

Abstract

We have studied the generation of reactive oxygen species during the metabolism of a carcinogen, benzo[a]pyrene, by human mammary epithelial cells. We have quantitated the production of one type of oxidative DNA damage, thymine glycols, by using a monoclonal antibody specific to this base modification. Thymine glycols were produced in DNA in a dose-dependent manner after exposure of human mammary epithelial cells to benzo[a]pyrene. The number of thymine glycols formed in the DNA was similar to that of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene covalently bound to the DNA. Exposure of cells to the carcinogen in the presence of superoxide dismutase, which reduces superoxide anions, inhibited the production of thymine glycols and increased cell survival but had little effect on adduct formation. At equitoxic doses, approximately equal to 10-fold more thymine glycols were formed after exposure to benzo[a]pyrene than to gamma-irradiation. Thymine glycols, produced by either agent, were efficiently removed from the DNA of the cells. Since thymine glycols represent only a portion of the oxidative damage possibly produced, our results indicate that the total amount of oxidative damage induced during the exposure of human mammary epithelial cells to benzo[a]pyrene greatly exceeds the amount produced by direct adduct formation and that this indirect damage plays an important role in the cytotoxicity of benzo[a]pyrene.

Full text

PDF
4365

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  2. Bartley J. C., Stampfer M. R. Factors influencing benzo[a]pyrene metabolism in human mammary epithelial cells in culture. Carcinogenesis. 1985 Jul;6(7):1017–1022. doi: 10.1093/carcin/6.7.1017. [DOI] [PubMed] [Google Scholar]
  3. Bartley J., Bartholomew J. C., Stampfer M. R. Metabolism of benzo(a)pyrene by human epithelial and fibroblastic cells: metabolite patterns and DNA adduct formation. J Cell Biochem. 1982;18(2):135–148. doi: 10.1002/jcb.1982.240180202. [DOI] [PubMed] [Google Scholar]
  4. Beer M., Stern S., Carmalt D., Mohlhenrich K. H. Determination of base sequence in nucleic acids with the electron microscope. V. The thymine-specific reactions of osmium tetroxide with deoxyribonucleic acid and its components. Biochemistry. 1966 Jul;5(7):2283–2288. doi: 10.1021/bi00871a017. [DOI] [PubMed] [Google Scholar]
  5. Brown H. S., Jeffrey A. M., Weinstein I. B. Formation of DNA adducts in 10T1/2 mouse embryo fibroblasts incubated with benzo(a)pyrene or dihydrodiol oxide derivatives. Cancer Res. 1979 May;39(5):1673–1677. [PubMed] [Google Scholar]
  6. Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  7. Duncan M., Brookes P., Dipple A. Metabolism and binding to cellular macromolecules of a series of hydrocarbons by mouse embryo cells in culture. Int J Cancer. 1969 Nov 15;4(6):813–819. doi: 10.1002/ijc.2910040610. [DOI] [PubMed] [Google Scholar]
  8. Hammond S. L., Ham R. G., Stampfer M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5435–5439. doi: 10.1073/pnas.81.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hariharan P. V., Cerutti P. A. Excision of damaged thymine residues from gamma-irradiated poly(dA-dT) by crude extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3532–3536. doi: 10.1073/pnas.71.9.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hariharan P. V., Cerutti P. A. Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans. J Mol Biol. 1972 Apr 28;66(1):65–81. doi: 10.1016/s0022-2836(72)80006-8. [DOI] [PubMed] [Google Scholar]
  11. Huberman E., Sachs L., Yang S. K., Gelboin V. Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci U S A. 1976 Feb;73(2):607–611. doi: 10.1073/pnas.73.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaneko M., Leadon S. A. Production of thymine glycols in DNA by N-hydroxy-2-naphthylamine as detected by a monoclonal antibody. Cancer Res. 1986 Jan;46(1):71–75. [PubMed] [Google Scholar]
  13. Kaneko M., Nakayama T., Kodama M., Nagata C. Detection of DNA lesions in cultured human fibroblasts induced by active oxygen species generated from a hydroxylated metabolite of 2-naphthylamine. Gan. 1984 Apr;75(4):349–354. [PubMed] [Google Scholar]
  14. Leadon S. A., Hanawalt P. C. Monoclonal antibody to DNA containing thymine glycol. Mutat Res. 1983 Aug;112(4):191–200. doi: 10.1016/0167-8817(83)90006-8. [DOI] [PubMed] [Google Scholar]
  15. Leadon S. A. Production of thymine glycols in DNA by radiation and chemical carcinogens as detected by a monoclonal antibody. Br J Cancer Suppl. 1987 Jun;8:113–117. [PMC free article] [PubMed] [Google Scholar]
  16. Levine L., Ohuchi K. Stimulation by carcinogens and promoters of prostaglandin production by dog kidney (MDCK) cells in culture. Cancer Res. 1978 Nov;38(11 Pt 2):4142–4146. [PubMed] [Google Scholar]
  17. SCHOLES G., WARD J. F., WEISS J. Mechanism of the radiation-induced degradation of nucleic acids. J Mol Biol. 1960 Dec;2:379–391. doi: 10.1016/s0022-2836(60)80049-6. [DOI] [PubMed] [Google Scholar]
  18. Sims P., Grover P. L., Swaisland A., Pal K., Hewer A. Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature. 1974 Nov 22;252(5481):326–328. doi: 10.1038/252326a0. [DOI] [PubMed] [Google Scholar]
  19. Stampfer M. R., Bartholomew J. C., Smith H. S., Bartley J. C. Metabolism of benzo[a]pyrene by human mammary epithelial cells: toxicity and DNA adduct formation. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6251–6255. doi: 10.1073/pnas.78.10.6251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stampfer M., Hallowes R. C., Hackett A. J. Growth of normal human mammary cells in culture. In Vitro. 1980 May;16(5):415–425. doi: 10.1007/BF02618365. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES