Abstract
We have identified specific binding sites for pancreatic polypeptide (PP) on the mucosal lining of canine small intestine. The present study was undertaken to further characterize these binding sites (receptors) on purified intestinal membranes and to establish their location on the brush border or basolateral surface of the intestinal enterocyte. Basolateral and brush border membranes were prepared by sorbitol density centrifugation. PP receptors were localized predominantly to the vascular surface, and thus binding of PP 125I-labeled on Tyr-27 to the basolateral preparation was used to evaluate receptor characteristics. Binding of PP was calcium, time, temperature, and pH dependent. Maximum specific binding of labeled PP occurred after an 8-hr incubation at 4 degrees C with 5 mM calcium at pH 6.8. Data analysis by Scatchard plot showed high- and low-affinity binding sites with relative affinities of 1.5 x 10(-9) M and 2.6 x 10(-8) M and with corresponding binding capacities of 0.23 pmol/mg and 0.84 pmol/mg of protein, respectively. This receptor was specific for PP since peptide YY and neuropeptide Y, peptides of the PP family, cross-reacted by less than 3%, as judged from comparisons of half-maximal displacement of label. Structurally dissimilar peptides, insulin and glucagon, did not compete for binding. Specific 125I-labeled PP binding was localized primarily to basolateral membranes (9.8 +/- 0.8%) with little binding by brush border membranes (0.8 +/- 0.2%). Thus, we have identified highly specific receptors for PP, located predominantly on the vascular surface of the small intestinal mucosa. These data suggest that the mucosal lining of the small intestine is a target tissue for PP and that PP participates in the hormonal regulation of fuel metabolism and substrate transport in the small intestinal mucosa.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamo M. L., Dyckes D. F., Hazelwood R. L. In vitro binding and degradation of avian pancreatic polypeptide by chicken and rat tissues. Endocrinology. 1983 Aug;113(2):508–516. doi: 10.1210/endo-113-2-508. [DOI] [PubMed] [Google Scholar]
- Adamo M. L., Hazelwood R. L. Cerebellar binding of avian pancreatic polypeptide. Endocrinology. 1984 Mar;114(3):794–800. doi: 10.1210/endo-114-3-794. [DOI] [PubMed] [Google Scholar]
- Bonnevie-Nielsen V., Polonsky K. S., Jaspan J. J., Rubenstein A. H., Schwartz T. W., Tager H. S. Surface receptors for pancreatic hormones in dog and rat hepatocytes: qualitative and quantitative differences in hormone-target cell interactions. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2167–2171. doi: 10.1073/pnas.79.7.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bueno L., Fioramonti J., Rayner V., Ruckebusch Y. Effects of motilin, somatostatin, and pancreatic polypeptide on the migrating myoelectric complex in pig and dog. Gastroenterology. 1982 Jun;82(6):1395–1402. [PubMed] [Google Scholar]
- Chance R. E., Cieszkowski M., Jaworek J., Konturek S. J., Swierczek J., Tasler J. Effect of pancreatic polypeptide and its C-terminal hexapeptide on meal and secretin induced pancreatic secretion in dogs. J Physiol. 1981 May;314:1–9. doi: 10.1113/jphysiol.1981.sp013685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cramb G., Langslow D. R., Phillips J. H. The binding of pancreatic hormones to isolated chicken hepatocytes. Gen Comp Endocrinol. 1982 Mar;46(3):297–309. doi: 10.1016/0016-6480(82)90003-x. [DOI] [PubMed] [Google Scholar]
- Dharmsathaphorn K., Harms V., Yamashiro D. J., Hughes R. J., Binder H. J., Wright E. M. Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J Clin Invest. 1983 Jan;71(1):27–35. doi: 10.1172/JCI110748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank B. H., Beckage M. J., Willey K. A. High-performance liquid chromatographic preparation of single-site carrier-free pancreatic polypeptide hormone radiotracers. J Chromatogr. 1983 Aug 26;266:239–248. doi: 10.1016/s0021-9673(01)90897-0. [DOI] [PubMed] [Google Scholar]
- Gilbert W. R., Kramer J. L., Frank B. H., Gingerich R. L. Intestinal mucosa is a target tissue for pancreatic polypeptide. Endocrinology. 1986 Jun;118(6):2495–2499. doi: 10.1210/endo-118-6-2495. [DOI] [PubMed] [Google Scholar]
- Glover I. D., Barlow D. J., Pitts J. E., Wood S. P., Tickle I. J., Blundell T. L., Tatemoto K., Kimmel J. R., Wollmer A., Strassburger W. Conformational studies on the pancreatic polypeptide hormone family. Eur J Biochem. 1984 Jul 16;142(2):379–385. doi: 10.1111/j.1432-1033.1984.tb08298.x. [DOI] [PubMed] [Google Scholar]
- Hall K. E., Diamant N. E., El-Sharkawy T. Y., Greenberg G. R. Effect of pancreatic polypeptide on canine migrating motor complex and plasma motilin. Am J Physiol. 1983 Aug;245(2):G178–G185. doi: 10.1152/ajpgi.1983.245.2.G178. [DOI] [PubMed] [Google Scholar]
- Kimmel J. R., Pollock H. G. Target organs for avian pancreatic polypeptide. Endocrinology. 1981 Nov;109(5):1693–1699. doi: 10.1210/endo-109-5-1693. [DOI] [PubMed] [Google Scholar]
- Konturek S. J., Meyers C. A., Kwiecień N., Obtułowicz W., Tasler J., Oleksy J., Kopp B., Coy D. H., Schally A. V. Effect of human pancreatic polypeptide and its C-terminal hexapeptide on pancreatic secretion in man and in the dog. Scand J Gastroenterol. 1982 Apr;17(3):395–399. doi: 10.3109/00365528209182074. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laburthe M., Chenut B., Rouyer-Fessard C., Tatemoto K., Couvineau A., Servin A., Amiranoff B. Interaction of peptide YY with rat intestinal epithelial plasma membranes: binding of the radioiodinated peptide. Endocrinology. 1986 May;118(5):1910–1917. doi: 10.1210/endo-118-5-1910. [DOI] [PubMed] [Google Scholar]
- Lin T. M., Chance R. E. Candidate hormones of the gut. VI. Bovine pancreatic polypeptide (BPP) and avian pancreatic polypeptide (APP). Gastroenterology. 1974 Oct;67(4):737–738. [PubMed] [Google Scholar]
- Lin T. M., Evans D. C., Chance R. E., Spray G. F. Bovine pancreatic peptide: action on gastric and pancreatic secretion in dogs. Am J Physiol. 1977 Mar;232(3):E311–E315. doi: 10.1152/ajpendo.1977.232.3.E311. [DOI] [PubMed] [Google Scholar]
- Messer M., Dahlqvist A. A one-step ultramicro method for the assay of intestinal disaccharidases. Anal Biochem. 1966 Mar;14(3):376–392. doi: 10.1016/0003-2697(66)90280-6. [DOI] [PubMed] [Google Scholar]
- Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J Membr Biol. 1976 Sep 17;28(4):309–333. doi: 10.1007/BF01869703. [DOI] [PubMed] [Google Scholar]
- Schuurmans Stekhoven F. M., De Pont J. J., Bonting S. L. Studies on (Na+ plus K+)-activated ATPase. XXXVII. Stabilization by cations of the enzyme-ouabain complex formed with Mg1+ and inorganic phosphate. Biochim Biophys Acta. 1976 Jan 8;419(1):137–149. doi: 10.1016/0005-2736(76)90378-3. [DOI] [PubMed] [Google Scholar]
- Sun Y. S., Brunicardi F. C., Druck P., Walfisch S., Berlin S. A., Chance R. E., Gingerich R. L., Elahi D., Andersen D. K. Reversal of abnormal glucose metabolism in chronic pancreatitis by administration of pancreatic polypeptide. Am J Surg. 1986 Jan;151(1):130–140. doi: 10.1016/0002-9610(86)90023-1. [DOI] [PubMed] [Google Scholar]