Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jul;85(13):4750–4754. doi: 10.1073/pnas.85.13.4750

DNA methylation as a mechanism of transcriptional regulation in nonphotosynthetic plastids in plant cells.

J Ngernprasirtsiri 1, H Kobayashi 1, T Akazawa 1
PMCID: PMC280513  PMID: 3387435

Abstract

Transcription of amyloplast DNA in a heterotrophic line of cultured cells of sycamore (Acer pseudoplatanus L.) appeared to be greatly suppressed. A mutant cell line obtained from the heterotrophic line is green and autotrophic. Heavy modification of amyloplast DNA with a variety of methylated bases was demonstrated by analysis of the acid hydrolysate of DNA by high-performance liquid chromatography, but little modification of chloroplast DNA from the green line was detected. When plastid DNAs from the original and green cell lines were digested with methyl-sensitive restriction enzymes, DNA methylation was detected in regions containing the genes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL), subunits of chloroplast coupling factor 1 (atpA, -B, and -E), the apoprotein of P700 (psaA), and ribosomal protein S4 (rps4) but not the genes for 16S rRNA and the 32-kDa QB protein (psbA) in the original line, whereas no methylation was observed in the green line. The genes for which methylation was not detectable were found to be active as templates for in vitro transcription by Escherichia coli RNA polymerase, but the methylated genes were apparently inactive. Methylation of DNA is a likely mechanism for the regulation of expression of amyloplast DNA in sycamore cells.

Full text

PDF
4750

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird A. P. DNA methylation--how important in gene control? Nature. 1984 Feb 9;307(5951):503–504. doi: 10.1038/307503a0. [DOI] [PubMed] [Google Scholar]
  2. Bligny R. Growth of Suspension-cultured Acer pseudoplatanus L. Cells in Automatic Culture Units of Large Volume. Plant Physiol. 1977 Mar;59(3):502–505. doi: 10.1104/pp.59.3.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolen P. L., Grant D. M., Swinton D., Boynton J. E., Gillham N. W. Extensive methylation of chloroplast DNA by a nuclear gene mutation does not affect chloroplast gene transmission in chlamydomonas. Cell. 1982 Feb;28(2):335–343. doi: 10.1016/0092-8674(82)90351-8. [DOI] [PubMed] [Google Scholar]
  4. Braun R. E., Wright A. DNA methylation differentially enhances the expression of one of the two E. coli dnaA promoters in vivo and in vitro. Mol Gen Genet. 1986 Feb;202(2):246–250. doi: 10.1007/BF00331644. [DOI] [PubMed] [Google Scholar]
  5. Gomez-Eichelmann M. C., Alvarez G. Genetic expression and gyrase dependence of methylated and undermethylated DNA in Escherichia coli. Biochim Biophys Acta. 1985 Jul 24;825(3):335–338. doi: 10.1016/0167-4781(85)90021-1. [DOI] [PubMed] [Google Scholar]
  6. Gruenbaum Y., Naveh-Many T., Cedar H., Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981 Aug 27;292(5826):860–862. doi: 10.1038/292860a0. [DOI] [PubMed] [Google Scholar]
  7. Keshet I., Lieman-Hurwitz J., Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986 Feb 28;44(4):535–543. doi: 10.1016/0092-8674(86)90263-1. [DOI] [PubMed] [Google Scholar]
  8. Kleckner N., Morisato D., Roberts D., Bender J. Mechanism and regulation of Tn10 transposition. Cold Spring Harb Symp Quant Biol. 1984;49:235–244. doi: 10.1101/sqb.1984.049.01.027. [DOI] [PubMed] [Google Scholar]
  9. Kobayashi H., Bogorad L., Miles C. D. Nuclear gene-regulated expression of chloroplast genes for coupling factor one in maize. Plant Physiol. 1987 Nov;85(3):757–767. doi: 10.1104/pp.85.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macherel D., Kobayashi H., Akazawa T., Kawano S., Kuroiwa T. Amyloplast nucleoids in sycamore cells and presence in amyloplast DNA of homologous sequences to chloroplast genes. Biochem Biophys Res Commun. 1985 Nov 27;133(1):140–146. doi: 10.1016/0006-291x(85)91852-2. [DOI] [PubMed] [Google Scholar]
  11. Macleod D., Bird A. Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm. Nature. 1983 Nov 10;306(5939):200–203. doi: 10.1038/306200a0. [DOI] [PubMed] [Google Scholar]
  12. Marinus M. G. DNA methylation influences trpR promoter activity in Escherichia coli K-12. Mol Gen Genet. 1985;200(1):185–186. doi: 10.1007/BF00383334. [DOI] [PubMed] [Google Scholar]
  13. McClelland M., Nelson M. The effect of site specific methylation on restriction endonuclease digestion. Nucleic Acids Res. 1985;13 (Suppl):r201–r207. doi: 10.1093/nar/13.suppl.r201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ngernprasirtsiri J., Macherel D., Kobayashi H., Akazawa T. Expression of Amyloplast and Chloroplast DNA in Suspension-Cultured Cells of Sycamore (Acer pseudoplatanus L.). Plant Physiol. 1988 Jan;86(1):137–142. doi: 10.1104/pp.86.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peterson K. R., Wertman K. F., Mount D. W., Marinus M. G. Viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon. Mol Gen Genet. 1985;201(1):14–19. doi: 10.1007/BF00397979. [DOI] [PubMed] [Google Scholar]
  16. Plasterk R. H., Vollering M., Brinkman A., Van de Putte P. Analysis of the methylation-regulated Mu mom transcript. Cell. 1984 Jan;36(1):189–196. doi: 10.1016/0092-8674(84)90088-6. [DOI] [PubMed] [Google Scholar]
  17. Razin A., Cedar H. DNA methylation in eukaryotic cells. Int Rev Cytol. 1984;92:159–185. doi: 10.1016/s0074-7696(08)61327-3. [DOI] [PubMed] [Google Scholar]
  18. Sager R., Lane D. Molecular basis of maternal inheritance. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2410–2413. doi: 10.1073/pnas.69.9.2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spena A., Viotti A., Pirrotta V. Two adjacent genomic zein sequences: structure, organization and tissue-specific restriction pattern. J Mol Biol. 1983 Oct 5;169(4):799–811. doi: 10.1016/s0022-2836(83)80137-5. [DOI] [PubMed] [Google Scholar]
  20. Sternberg N., Sauer B., Hoess R., Abremski K. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol. 1986 Jan 20;187(2):197–212. doi: 10.1016/0022-2836(86)90228-7. [DOI] [PubMed] [Google Scholar]
  21. Valencia R., N'Guyen Công H., Bertaux O. Separation of naturally occurring or induced methylated nucleobases of DNA by reversed-phase high-performance liquid chromatography. J Chromatogr. 1985 May 29;325(1):207–220. doi: 10.1016/s0021-9673(00)96021-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES