Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 May;61(5):1667–1673. doi: 10.1128/iai.61.5.1667-1673.1993

Enhanced virulence of Escherichia coli bearing a site-targeted mutation in the major structural subunit of type 1 fimbriae.

A K May 1, C A Bloch 1, R G Sawyer 1, M D Spengler 1, T L Pruett 1
PMCID: PMC280749  PMID: 8097491

Abstract

Type 1 fimbriae promote enterobacterial adherence to a variety of mammalian cells and are thought to play an important role in the establishment of various extraintestinal infections. Whether or not this adhesin has a role in the pathogenesis of peritoneal Escherichia coli infections, such as those initiated by bowel leakage during intraabdominal surgery, is unclear. By using two genetically engineered E. coli strains, each bearing an antibiotic resistance element inserted at a different site within the type 1 fimbria operon, we examined the role of type 1 fimbriation in intraperitoneal infection in rats. A permanently nonfimbriated insertion mutant was compared with an analogously constructed normally fimbriated one. After intraperitoneal inoculation of adult rats, the permanently nonfimbriated mutant produced mortality more rapidly and resulted in a greater number of culturable organisms from both the peritoneum and the blood. Moreover, the differences between these two insertion mutants were dramatically enhanced by preinoculation growth conditions favoring fimbrial expression. After growth under these conditions, 10(3) CFU of the fimbriation-proficient strain inoculated intraperitoneally caused no mortality; in sharp contrast, the permanently nonfimbriated insertion mutant resulted in death in 60% of the animals inoculated. Notwithstanding evidence that type 1 fimbriae mediate enterobacterial adherence to mammalian oropharyngeal and bladder mucosae, the results presented here demonstrate that type 1 fimbrial expression can lead to diminution of the number of E. coli organisms within the peritoneum.

Full text

PDF
1667

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkan M. L., Wong L., Silverblatt F. J. Change in degree of type 1 piliation of Escherichia coli during experimental peritonitis in the mouse. Infect Immun. 1986 Nov;54(2):549–554. doi: 10.1128/iai.54.2.549-554.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bar-Shavit Z., Goldman R., Ofek I., Sharon N., Mirelman D. Mannose-binding activity of Escherichia coli: a determinant of attachment and ingestion of the bacteria by macrophages. Infect Immun. 1980 Aug;29(2):417–424. doi: 10.1128/iai.29.2.417-424.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloch C. A., Orndorff P. E. Impaired colonization by and full invasiveness of Escherichia coli K1 bearing a site-directed mutation in the type 1 pilin gene. Infect Immun. 1990 Jan;58(1):275–278. doi: 10.1128/iai.58.1.275-278.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blumenstock E., Jann K. Adhesion of piliated Escherichia coli strains to phagocytes: differences between bacteria with mannose-sensitive pili and those with mannose-resistant pili. Infect Immun. 1982 Jan;35(1):264–269. doi: 10.1128/iai.35.1.264-269.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dellinger E. P., Wertz M. J., Meakins J. L., Solomkin J. S., Allo M. D., Howard R. J., Simmons R. L. Surgical infection stratification system for intra-abdominal infection. Multicenter trial. Arch Surg. 1985 Jan;120(1):21–29. doi: 10.1001/archsurg.1985.01390250015003. [DOI] [PubMed] [Google Scholar]
  6. Dunn D. L., Barke R. A., Knight N. B., Humphrey E. W., Simmons R. L. Role of resident macrophages, peripheral neutrophils, and translymphatic absorption in bacterial clearance from the peritoneal cavity. Infect Immun. 1985 Aug;49(2):257–264. doi: 10.1128/iai.49.2.257-264.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farthmann E. H., Schöffel U. Principles and limitations of operative management of intraabdominal infections. World J Surg. 1990 Mar-Apr;14(2):210–217. doi: 10.1007/BF01664875. [DOI] [PubMed] [Google Scholar]
  8. Hagberg L., Hull R., Hull S., Falkow S., Freter R., Svanborg Edén C. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect Immun. 1983 Apr;40(1):265–272. doi: 10.1128/iai.40.1.265-272.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hau T. Bacteria, toxins, and the peritoneum. World J Surg. 1990 Mar-Apr;14(2):167–175. doi: 10.1007/BF01664869. [DOI] [PubMed] [Google Scholar]
  10. Hultgren S. J., Porter T. N., Schaeffer A. J., Duncan J. L. Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect Immun. 1985 Nov;50(2):370–377. doi: 10.1128/iai.50.2.370-377.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunt J. L. Generalized peritonitis. To irrigate or not to irrigate the abdominal cavity. Arch Surg. 1982 Feb;117(2):209–212. doi: 10.1001/archsurg.1982.01380260075013. [DOI] [PubMed] [Google Scholar]
  12. Keith B. R., Harris S. L., Russell P. W., Orndorff P. E. Effect of type 1 piliation on in vitro killing of Escherichia coli by mouse peritoneal macrophages. Infect Immun. 1990 Oct;58(10):3448–3454. doi: 10.1128/iai.58.10.3448-3454.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krogfelt K. A., McCormick B. A., Burghoff R. L., Laux D. C., Cohen P. S. Expression of Escherichia coli F-18 type 1 fimbriae in the streptomycin-treated mouse large intestine. Infect Immun. 1991 Apr;59(4):1567–1568. doi: 10.1128/iai.59.4.1567-1568.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lock R., Dahlgren C., Lindén M., Stendahl O., Svensbergh A., Ohman L. Neutrophil killing of two type 1 fimbria-bearing Escherichia coli strains: dependence on respiratory burst activation. Infect Immun. 1990 Jan;58(1):37–42. doi: 10.1128/iai.58.1.37-42.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lorber B., Swenson R. M. The bacteriology of intra-abdominal infections. Surg Clin North Am. 1975 Dec;55(6):1349–1354. doi: 10.1016/s0039-6109(16)40792-9. [DOI] [PubMed] [Google Scholar]
  16. Matsumoto T., Mizunoe Y., Sakamoto N., Kumazawa J. Suitability of colchicine and superoxide dismutase for the suppression of renal scarring following an infection with bacteria showing mannose-sensitive pili. Nephron. 1990;56(2):130–135. doi: 10.1159/000186120. [DOI] [PubMed] [Google Scholar]
  17. Minshew B. H., Jorgensen J., Swanstrum M., Grootes-Reuvecamp G. A., Falkow S. Some characteristics of Escherichia coli strains isolated from extraintestinal infections of humans. J Infect Dis. 1978 May;137(5):648–654. doi: 10.1093/infdis/137.5.648. [DOI] [PubMed] [Google Scholar]
  18. Nowicki B., Vuopio-Varkila J., Viljanen P., Korhonen T. K., Mäkelä P. H. Fimbrial phase variation and systemic E. coli infection studied in the mouse peritonitis model. Microb Pathog. 1986 Aug;1(4):335–347. doi: 10.1016/0882-4010(86)90066-5. [DOI] [PubMed] [Google Scholar]
  19. Ofek I., Beachey E. H. Mannose binding and epithelial cell adherence of Escherichia coli. Infect Immun. 1978 Oct;22(1):247–254. doi: 10.1128/iai.22.1.247-254.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Onderdonk A. B., Bartlett J. G., Louie T., Sullivan-Seigler N., Gorbach S. L. Microbial synergy in experimental intra-abdominal abscess. Infect Immun. 1976 Jan;13(1):22–26. doi: 10.1128/iai.13.1.22-26.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Orndorff P. E., Bloch C. A. The role of type 1 pili in the pathogenesis of Escherichia coli infections: a short review and some new ideas. Microb Pathog. 1990 Aug;9(2):75–79. doi: 10.1016/0882-4010(90)90081-z. [DOI] [PubMed] [Google Scholar]
  22. Orskov F. Virulence factors of the bacterial cell surface. J Infect Dis. 1978 May;137(5):630–633. doi: 10.1093/infdis/137.5.630. [DOI] [PubMed] [Google Scholar]
  23. Sawyer R. G., Spengler M. D., Adams R. B., Pruett T. L. The peritoneal environment during infection. The effect of monomicrobial and polymicrobial bacteria on pO2 and pH. Ann Surg. 1991 Mar;213(3):253–260. doi: 10.1097/00000658-199103000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sparling P. F. Bacterial virulence and pathogenesis: an overview. Rev Infect Dis. 1983 Sep-Oct;5 (Suppl 4):S637–S646. doi: 10.1093/clinids/5.supplement_4.s637. [DOI] [PubMed] [Google Scholar]
  25. Steadman R., Matthews N., Lichodziejewska M., Williams J. D. Human neutrophil responses to pathogenic Escherichia coli are receptor-specific and selectively augmented by recombinant human tumor necrosis factor-alpha. J Infect Dis. 1991 May;163(5):1033–1039. doi: 10.1093/infdis/163.5.1033. [DOI] [PubMed] [Google Scholar]
  26. Svanborg Edén C., de Man P. Bacterial virulence in urinary tract infection. Infect Dis Clin North Am. 1987 Dec;1(4):731–750. [PubMed] [Google Scholar]
  27. Walsh G. L., Chiasson P., Hedderich G., Wexler M. J., Meakins J. L. The open abdomen. The Marlex mesh and zipper technique: a method of managing intraperitoneal infection. Surg Clin North Am. 1988 Feb;68(1):25–40. doi: 10.1016/s0039-6109(16)44430-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES