Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 May;61(5):2011–2014. doi: 10.1128/iai.61.5.2011-2014.1993

Coaggregation of Prevotella intermedia with oral Actinomyces species.

W E Nesbitt 1, H Fukushima 1, K P Leung 1, W B Clark 1
PMCID: PMC280796  PMID: 8478088

Abstract

Five strains of Prevotella intermedia were examined for their ability to coaggregate with various gram-positive and gram-negative species of oral bacteria. Two of the P. intermedia strains coaggregated with selected Actinomyces species, P. intermedia 27 with Actinomyces viscosus T14V and Actinomyces naeslundii ATCC 12104, PK606, PK984, and PK947, and P. intermedia 113 with Actinomyces odontolyticus WVU 1546 and Actinomyces israelii WVU 838. Exposure of both Prevotella strains but not the Actinomyces strains to heat, trypsin, or proteinase K abolished most coaggregations. All pairs were disaggregated by the addition of sodium dodecyl sulfate, but only those coaggregations involving P. intermedia 113 were reversed by the addition of 2.0 M urea. P. intermedia 27 was sensitive to periodate oxidation, whereas the partner strains were stable to this treatment. Most coaggregations occurred in the presence of saliva; however, reactions involving P. intermedia 27 were not as strong as those of buffer-suspended cells. Treatment of both P. intermedia 113 coaggregations pairs with proteinase K and the results obtained from suspensions of these pairs in saliva suggest that different surface molecules of this P. intermedia strain may mediate each of these coaggregations. These data suggest that all of these coaggregations involve either a protein or glycoprotein on the Prevotella strain, which may interact with carbohydrates or carbohydrate-containing molecules on the surface of the Actinomyces strain.

Full text

PDF
2011

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cisar J. O., Kolenbrander P. E., McIntire F. C. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979 Jun;24(3):742–752. doi: 10.1128/iai.24.3.742-752.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cisar J. O., Vatter A. E., Clark W. B., Curl S. H., Hurst-Calderone S., Sandberg A. L. Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae. Infect Immun. 1988 Nov;56(11):2984–2989. doi: 10.1128/iai.56.11.2984-2989.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crowley P. J., Fischlschweiger W., Coleman S. E., Bleiweis A. S. Intergeneric bacterial coaggregations involving mutans streptococci and oral actinomyces. Infect Immun. 1987 Nov;55(11):2695–2700. doi: 10.1128/iai.55.11.2695-2700.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dzink J. L., Gibbons R. J., Childs W. C., 3rd, Socransky S. S. The predominant cultivable microbiota of crevicular epithelial cells. Oral Microbiol Immunol. 1989 Mar;4(1):1–5. doi: 10.1111/j.1399-302x.1989.tb00398.x. [DOI] [PubMed] [Google Scholar]
  5. Eifuku H., Yakushiji T., Mizuno J., Kudo N., Inoue M. Cellular coaggregation of oral Streptococcus milleri with actinomyces. Infect Immun. 1990 Jan;58(1):163–168. doi: 10.1128/iai.58.1.163-168.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eke P. I., Rotimi V. O., Laughon B. E. Coaggregation of black-pigmented Bacteroides species with other oral bacteria. J Med Microbiol. 1989 Jan;28(1):1–4. doi: 10.1099/00222615-28-1-1. [DOI] [PubMed] [Google Scholar]
  7. Fukushima H., Moroi H., Inoue J., Onoe T., Ezaki T., Yabuuchi E., Leung K. P., Walker C. B., Clark W. B., Sagawa H. Phenotypic characteristics and DNA relatedness in Prevotella intermedia and similar organisms. Oral Microbiol Immunol. 1992 Feb;7(1):60–64. doi: 10.1111/j.1399-302x.1992.tb00023.x. [DOI] [PubMed] [Google Scholar]
  8. Kinder S. A., Holt S. C. Characterization of coaggregation between Bacteroides gingivalis T22 and Fusobacterium nucleatum T18. Infect Immun. 1989 Nov;57(11):3425–3433. doi: 10.1128/iai.57.11.3425-3433.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kolenbrander P. E., Andersen R. N. Cell to cell interactions of Capnocytophaga and Bacteroides species with other oral bacteria and their potential role in development of plaque. J Periodontal Res. 1984 Nov;19(6):564–569. doi: 10.1111/j.1600-0765.1984.tb01315.x. [DOI] [PubMed] [Google Scholar]
  10. Kolenbrander P. E., Andersen R. N., Holdeman L. V. Coaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions. Infect Immun. 1985 Jun;48(3):741–746. doi: 10.1128/iai.48.3.741-746.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leung K. P., Fukushima H., Sagawa H., Walker C. B., Clark W. B. Surface appendages, hemagglutination, and adherence to human epithelial cells of Bacteroides intermedius. Oral Microbiol Immunol. 1989 Dec;4(4):204–210. doi: 10.1111/j.1399-302x.1989.tb00253.x. [DOI] [PubMed] [Google Scholar]
  12. Loesche W. J., Syed S. A., Laughon B. E., Stoll J. The bacteriology of acute necrotizing ulcerative gingivitis. J Periodontol. 1982 Apr;53(4):223–230. doi: 10.1902/jop.1982.53.4.223. [DOI] [PubMed] [Google Scholar]
  13. Loesche W. J., Syed S. A., Schmidt E., Morrison E. C. Bacterial profiles of subgingival plaques in periodontitis. J Periodontol. 1985 Aug;56(8):447–456. doi: 10.1902/jop.1985.56.8.447. [DOI] [PubMed] [Google Scholar]
  14. van Winkelhoff A. J., Carlee A. W., de Graaff J. Bacteroides endodontalis and other black-pigmented Bacteroides species in odontogenic abscesses. Infect Immun. 1985 Sep;49(3):494–497. doi: 10.1128/iai.49.3.494-497.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES