Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Jul;61(7):2854–2865. doi: 10.1128/iai.61.7.2854-2865.1993

Characterization of cellular infiltrates and cytokine production during the expression phase of the anticryptococcal delayed-type hypersensitivity response.

K L Buchanan 1, J W Murphy 1
PMCID: PMC280931  PMID: 8514388

Abstract

Cryptococcosis, an increasingly important opportunistic infection caused by the encapsulated yeast-like organism Cryptococcus neoformans, is limited by an anticryptococcal cell-mediated immune (CMI) response. Gaining a thorough understanding of the complex anticryptococcal CMI response is essential for developing means of controlling infections with C. neoformans. The murine cryptococcosis model utilizing footpad swelling to cryptococcal antigen (delayed-type hypersensitivity [DTH]) has proven to be a valuable tool for studying the induction and regulation of the anticryptococcal CMI response, but this technique has limitations with regard to evaluating the role of the final effector cells recruited by an ongoing CMI response. The purpose of this study was to assess the types of cells and cytokines induced into the site of cryptococcal antigen deposition in C. neoformans-infected and -immunized mice compared with those for control mice. We used a gelatin sponge implant model to examine the cells and cytokines present at the site of an anticryptococcal DTH response. Sponges implanted in infected mice and injected with cryptococcal culture filtrate antigen (CneF) 24 h before assessment had significantly increased numbers of infiltrating leukocytes compared with saline-injected sponges in the same animals. Exaggerated influxes of neutrophils and mononuclear cells were the major contributors to the increase in total numbers of cells in the DTH-reactive sponges. The numbers of CD4+ and LFA-1+ cells were found to be significantly increased in the CneF-injected sponges of infected and immunized mice over the numbers in control sponges. The numbers of large granular lymphocytes were also increased in DTH-reactive sponges compared with control sponges. Gamma interferon, interleukin 2 (IL-2), and IL-5 are clearly relevant cytokines in the anticryptococcal CMI response, since they were produced in greater amounts in the CneF-injected sponges from C. neoformans-infected and -immunized mice than in control sponges. IL-4 was not associated with the expression of DTH to cryptococcal antigen. The gelatin sponge model is an excellent tool for studying cells and cytokines involved in specific CMI responses.

Full text

PDF
2854

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams I. Further studies on acquired resistance to murine cryptococcosis: enhancing effect of Bordetella pertussis. J Immunol. 1966 Mar;96(3):525–529. [PubMed] [Google Scholar]
  2. Akporiaye E. T., Barbieri C. A., Stewart C. C., Bender J. G. Gelatin sponge model of effector recruitment: tumoricidal activity of adherent and non-adherent lymphokine-activated killer cells after culture in interleukin-2. J Leukoc Biol. 1991 Feb;49(2):189–196. doi: 10.1002/jlb.49.2.189. [DOI] [PubMed] [Google Scholar]
  3. Akporiaye E. T., Kudalore M., Stevenson A. P., Kraemer P. M., Stewart C. C. Isolation and reactivity of host effectors associated with the manifestation of concomitant tumor immunity. Cancer Res. 1988 Mar 1;48(5):1153–1158. [PubMed] [Google Scholar]
  4. Akporiaye E. T., Stewart S. J., Stevenson A. P., Stewart C. C. A gelatin sponge model for studying tumor growth: flow cytometric analysis and quantitation of leukocytes and tumor cells in the EMT6 mouse tumor. Cancer Res. 1985 Dec;45(12 Pt 1):6457–6462. [PubMed] [Google Scholar]
  5. Beck J. S., Morley S. M., Gibbs J. H., Potts R. C., Ilias M. I., Kardjito T., Grange J. M., Stanford J., Brown R. A. The cellular responses of tuberculosis and leprosy patients and of healthy controls in skin tests to 'new tuberculin' and leprosin A. Clin Exp Immunol. 1986 Jun;64(3):484–494. [PMC free article] [PubMed] [Google Scholar]
  6. Beck J. S., Morley S. M., Lowe J. G., Brown R. A., Grange J. M., Gibbs J. H., Potts R. C., Kardjito T. Diversity in migration of CD4 and CD8 lymphocytes in different microanatomical compartments of the skin in the tuberculin reaction in man. Br J Exp Pathol. 1988 Dec;69(6):771–780. [PMC free article] [PubMed] [Google Scholar]
  7. Biron C. A., Natuk R. J., Welsh R. M. Generation of large granular T lymphocytes in vivo during viral infection. J Immunol. 1986 Mar 15;136(6):2280–2286. [PubMed] [Google Scholar]
  8. Cauley L. K., Murphy J. W. Response of congenitally athymic (nude) and phenotypically normal mice to Cryptococcus neoformans infection. Infect Immun. 1979 Mar;23(3):644–651. doi: 10.1128/iai.23.3.644-651.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cher D. J., Mosmann T. R. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol. 1987 Jun 1;138(11):3688–3694. [PubMed] [Google Scholar]
  10. Cherwinski H. M., Schumacher J. H., Brown K. D., Mosmann T. R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987 Nov 1;166(5):1229–1244. doi: 10.1084/jem.166.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crowle A. J. Delayed hypersensitivity in the mouse. Adv Immunol. 1975;20:197–264. doi: 10.1016/s0065-2776(08)60209-6. [DOI] [PubMed] [Google Scholar]
  12. Dustin M. L., Springer T. A. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol. 1991;9:27–66. doi: 10.1146/annurev.iy.09.040191.000331. [DOI] [PubMed] [Google Scholar]
  13. Fernandez-Botran R., Sanders V. M., Mosmann T. R., Vitetta E. S. Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells. J Exp Med. 1988 Aug 1;168(2):543–558. doi: 10.1084/jem.168.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fong T. A., Mosmann T. R. The role of IFN-gamma in delayed-type hypersensitivity mediated by Th1 clones. J Immunol. 1989 Nov 1;143(9):2887–2893. [PubMed] [Google Scholar]
  15. Gajewski T. F., Fitch F. W. Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol. 1988 Jun 15;140(12):4245–4252. [PubMed] [Google Scholar]
  16. Hidore M. R., Murphy J. W. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infect Immun. 1986 Feb;51(2):547–555. doi: 10.1128/iai.51.2.547-555.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hidore M. R., Murphy J. W. Natural cellular resistance of beige mice against Cryptococcus neoformans. J Immunol. 1986 Dec 1;137(11):3624–3631. [PubMed] [Google Scholar]
  18. Hidore M. R., Nabavi N., Sonleitner F., Murphy J. W. Murine natural killer cells are fungicidal to Cryptococcus neoformans. Infect Immun. 1991 May;59(5):1747–1754. doi: 10.1128/iai.59.5.1747-1754.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill J. O. CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J Exp Med. 1992 Jun 1;175(6):1685–1695. doi: 10.1084/jem.175.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hubbard R. D., Flory C. M., Collins F. M. Memory T cell-mediated resistance to Mycobacterium tuberculosis infection in innately susceptible and resistant mice. Infect Immun. 1991 Jun;59(6):2012–2016. doi: 10.1128/iai.59.6.2012-2016.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Issekutz T. B., Stoltz J. M., van der Meide P. The recruitment of lymphocytes into the skin by T cell lymphokines: the role of gamma-interferon. Clin Exp Immunol. 1988 Jul;73(1):70–75. [PMC free article] [PubMed] [Google Scholar]
  22. Issekutz T. B., Stoltz J. M., vd Meide P. Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma. J Immunol. 1988 May 1;140(9):2989–2993. [PubMed] [Google Scholar]
  23. Kasai M., Iwamori M., Nagai Y., Okumura K., Tada T. A glycolipid on the surface of mouse natural killer cells. Eur J Immunol. 1980 Mar;10(3):175–180. doi: 10.1002/eji.1830100304. [DOI] [PubMed] [Google Scholar]
  24. Khakpour F. R., Murphy J. W. Characterization of a third-order suppressor T cell (Ts3) induced by cryptococcal antigen(s). Infect Immun. 1987 Jul;55(7):1657–1662. doi: 10.1128/iai.55.7.1657-1662.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuramoto Y., Tagami H. Histopathologic pattern analysis of human intracutaneous tuberculin reaction. Am J Dermatopathol. 1989 Aug;11(4):329–337. doi: 10.1097/00000372-198908000-00006. [DOI] [PubMed] [Google Scholar]
  26. Levitz S. M. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophage colony-stimulating factor to inhibit Cryptococcus neoformans. Infect Immun. 1991 Oct;59(10):3393–3397. doi: 10.1128/iai.59.10.3393-3397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levitz S. M., DiBenedetto D. J. Differential stimulation of murine resident peritoneal cells by selectively opsonized encapsulated and acapsular Cryptococcus neoformans. Infect Immun. 1988 Oct;56(10):2544–2551. doi: 10.1128/iai.56.10.2544-2551.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lim T. S., Murphy J. W., Cauley L. K. Host-etiological agent interactions in intranasally and intraperitoneally induced Cryptococcosis in mice. Infect Immun. 1980 Aug;29(2):633–641. doi: 10.1128/iai.29.2.633-641.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lim T. S., Murphy J. W. Transfer of immunity to cryptococcosis by T-enriched splenic lymphocytes from Cryptococcus neoformans-sensitized mice. Infect Immun. 1980 Oct;30(1):5–11. doi: 10.1128/iai.30.1.5-11.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Middleton M. M., Campbell P. A. Functions of purified mouse neutrophils isolated from gelatin sponges. J Leukoc Biol. 1989 Nov;46(5):461–466. doi: 10.1002/jlb.46.5.461. [DOI] [PubMed] [Google Scholar]
  31. Mody C. H., Lipscomb M. F., Street N. E., Toews G. B. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol. 1990 Feb 15;144(4):1472–1477. [PubMed] [Google Scholar]
  32. Mody C. H., Tyler C. L., Sitrin R. G., Jackson C., Toews G. B. Interferon-gamma activates rat alveolar macrophages for anticryptococcal activity. Am J Respir Cell Mol Biol. 1991 Jul;5(1):19–26. doi: 10.1165/ajrcmb/5.1.19. [DOI] [PubMed] [Google Scholar]
  33. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  34. Mosmann T. R., Fong T. A. Specific assays for cytokine production by T cells. J Immunol Methods. 1989 Jan 17;116(2):151–158. doi: 10.1016/0022-1759(89)90198-1. [DOI] [PubMed] [Google Scholar]
  35. Murphy J. W. Clearance of Cryptococcus neoformans from immunologically suppressed mice. Infect Immun. 1989 Jul;57(7):1946–1952. doi: 10.1128/iai.57.7.1946-1952.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Murphy J. W., Cox R. A. Induction of antigen-specific suppression by circulating Cryptococcus neoformans antigen. Clin Exp Immunol. 1988 Aug;73(2):174–180. [PMC free article] [PubMed] [Google Scholar]
  37. Murphy J. W., Cozad G. C. Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect Immun. 1972 Jun;5(6):896–901. doi: 10.1128/iai.5.6.896-901.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Murphy J. W. Effects of first-order Cryptococcus-specific T-suppressor cells on induction of cells responsible for delayed-type hypersensitivity. Infect Immun. 1985 May;48(2):439–445. doi: 10.1128/iai.48.2.439-445.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Murphy J. W., Gregory J. A., Larsh H. W. Skin testing of guinea pigs and footpad testing of mice with a new antigen for detecting delayed hypersensitivity to Cryptococcus neoformans. Infect Immun. 1974 Feb;9(2):404–409. doi: 10.1128/iai.9.2.404-409.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Murphy J. W. Influence of cryptococcal antigens on cell-mediated immunity. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S432–S435. doi: 10.1093/cid/10.supplement_2.s432. [DOI] [PubMed] [Google Scholar]
  41. Murphy J. W., Moorhead J. W. Regulation of cell-mediated immunity in cryptococcosis. I. Induction of specific afferent T suppressor cells by cryptococcal antigen. J Immunol. 1982 Jan;128(1):276–283. [PubMed] [Google Scholar]
  42. Murphy J. W., Mosley R. L., Moorhead J. W. Regulation of cell-mediated immunity in cryptococcosis. II. Characterization of first-order T suppressor cells (Ts1) and induction of second-order suppressor cells. J Immunol. 1983 Jun;130(6):2876–2881. [PubMed] [Google Scholar]
  43. Murphy J. W., Mosley R. L. Regulation of cell-mediated immunity in cryptococcosis. III. Characterization of second-order T suppressor cells (Ts2). J Immunol. 1985 Jan;134(1):577–584. [PubMed] [Google Scholar]
  44. Nathan C. F., Kaplan G., Levis W. R., Nusrat A., Witmer M. D., Sherwin S. A., Job C. K., Horowitz C. R., Steinman R. M., Cohn Z. A. Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. N Engl J Med. 1986 Jul 3;315(1):6–15. doi: 10.1056/NEJM198607033150102. [DOI] [PubMed] [Google Scholar]
  45. Nishimura K., Miyaji M. Histopathological studies on experimental cryptococcosis in nude mice. Mycopathologia. 1979 Sep 28;68(3):145–153. doi: 10.1007/BF00578522. [DOI] [PubMed] [Google Scholar]
  46. Poulter L. W., Seymour G. J., Duke O., Janossy G., Panayi G. Immunohistological analysis of delayed-type hypersensitivity in man. Cell Immunol. 1982 Dec;74(2):358–369. doi: 10.1016/0008-8749(82)90036-3. [DOI] [PubMed] [Google Scholar]
  47. Riera C. M., Masih D. T., Nobile R. Experimental cryptococcosis in guinea pigs. Mycopathologia. 1983 Jun 20;82(3):179–184. doi: 10.1007/BF00439224. [DOI] [PubMed] [Google Scholar]
  48. Roberts P. J., Häyry P. Sponge matrix allografts. A model for analysis of killer cells infiltrating mouse allografts. Transplantation. 1976 Jun;21(6):437–445. [PubMed] [Google Scholar]
  49. Sullivan L., Sano S., Pirmez C., Salgame P., Mueller C., Hofman F., Uyemura K., Rea T. H., Bloom B. R., Modlin R. L. Expression of adhesion molecules in leprosy lesions. Infect Immun. 1991 Nov;59(11):4154–4160. doi: 10.1128/iai.59.11.4154-4160.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takatsu K. Interleukin 5 (IL-5) and its receptor. Microbiol Immunol. 1991;35(8):593–606. doi: 10.1111/j.1348-0421.1991.tb01591.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES