Abstract
Equine neutrophil antimicrobial peptide 2 (eNAP-2), a recently described antimicrobial peptide isolated from equine neutrophils, was found to selectively inactivate microbial serine proteases (subtilisin A and proteinase K) without inhibiting mammalian serine proteases (human neutrophil elastase, human cathepsin G, and bovine pancreatic trypsin). Although the primary structure of eNAP-2 resembled that of several known antiproteases that belong to the 4-disulfide core peptide family, this pattern of selectivity is unique. eNAP-2 formed a noncovalent complex with native subtilisin A or proteinase K but did not associate with these enzymes if they had been treated with phenylmethylsulfonyl fluoride, a serine protease inhibitor. The eNAP-2-microbial protease complex was disrupted by boiling or by exposure to low pH. We suggest that eNAP-2 exerted selective antiproteinase activity by binding tightly but noncovalently to the active site of subtilisin A or proteinase K. Since microbial exoproteases may act as virulence factors, the combined antimicrobial and antiprotease activities of eNAP-2 could allow it to play an important role in neutrophil-mediated antimicrobial defenses.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Couto M. A., Harwig S. S., Cullor J. S., Hughes J. P., Lehrer R. I. Identification of eNAP-1, an antimicrobial peptide from equine neutrophils. Infect Immun. 1992 Aug;60(8):3065–3071. doi: 10.1128/iai.60.8.3065-3071.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couto M. A., Harwig S. S., Cullor J. S., Hughes J. P., Lehrer R. I. eNAP-2, a novel cysteine-rich bactericidal peptide from equine leukocytes. Infect Immun. 1992 Dec;60(12):5042–5047. doi: 10.1128/iai.60.12.5042-5047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas L. J. Candida proteinases and candidosis. Crit Rev Biotechnol. 1988;8(2):121–129. doi: 10.3109/07388558809150541. [DOI] [PubMed] [Google Scholar]
- Ganz T., Selsted M. E., Szklarek D., Harwig S. S., Daher K., Bainton D. F., Lehrer R. I. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985 Oct;76(4):1427–1435. doi: 10.1172/JCI112120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett. 1991 Oct;30(2):201–205. doi: 10.1016/0165-2478(91)90026-7. [DOI] [PubMed] [Google Scholar]
- Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
- Neurath H. Evolution of proteolytic enzymes. Science. 1984 Apr 27;224(4647):350–357. doi: 10.1126/science.6369538. [DOI] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Pellegrini A., Hägeli G., von Fellenberg R. Isolation and characterization of three protein proteinase isoinhibitors from the granular fraction of horse neutrophilic granulocytes. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1107–1113. doi: 10.1016/0006-291x(88)90255-0. [DOI] [PubMed] [Google Scholar]
- REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
- Rechnitzer C., Williams A., Wright J. B., Dowsett A. B., Milman N., Fitzgeorge R. B. Demonstration of the intracellular production of tissue-destructive protease by Legionella pneumophila multiplying within guinea-pig and human alveolar macrophages. J Gen Microbiol. 1992 Aug;138(Pt 8):1671–1677. doi: 10.1099/00221287-138-8-1671. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Selsted M. E., Szklarek D., Lehrer R. I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun. 1984 Jul;45(1):150–154. doi: 10.1128/iai.45.1.150-154.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorsa T., Ingman T., Suomalainen K., Haapasalo M., Konttinen Y. T., Lindy O., Saari H., Uitto V. J. Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast-type interstitial collagenases. Infect Immun. 1992 Nov;60(11):4491–4495. doi: 10.1128/iai.60.11.4491-4495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]