Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Aug;61(8):3216–3221. doi: 10.1128/iai.61.8.3216-3221.1993

Specificity of rabbit antisera against the rough lipopolysaccharide of Salmonella minnesota R4 (chemotype Rd2P-)

A Swierzko 1, L Brade 1, H Paulsen 1, H Brade 1
PMCID: PMC280990  PMID: 8335352

Abstract

Rabbit polyclonal antibodies against the rough mutant lipopolysaccharide (LPS) of Salmonella minnesota R4 (chemotype Rd2P-) were serologically characterized by using R4 LPS, deacylated LPS, dephosphorylated LPS, and synthetic partial structures, including compounds comprising the core region of Rd2P- LPS bound to the beta 1-->6-linked glucosamine disaccharide with two amide-linked 3-hydroxytetradecanoic acid residues or coupled to bovine serum albumin. By using a passive hemolysis assay and an enzyme immunoassay and absorption and inhibition experiments, the antibody specificities present could be determined. One group of antibodies required components of the core oligosaccharide (with or without the side chain 3-deoxy-D-manno-octulosonic acid [Kdo]) and the phosphorylated glucosamine disaccharide of the lipid A moiety for binding. The phosphate-independent antibodies were directed against the core oligosaccharide, recognizing an epitope consisting of one terminal heptose linked to Kdo or to the reducing moiety of the alpha 2-->4-linked Kdo disaccharide. Antibodies requiring the presence of acyl residues and those reacting with a single heptose or Kdo residue were not detected.

Full text

PDF
3216

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brade H., Galanos C., Lüderitz O. Differential determination of the 3-Deoxy-D-mannooctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur J Biochem. 1983 Mar 1;131(1):195–200. doi: 10.1111/j.1432-1033.1983.tb07249.x. [DOI] [PubMed] [Google Scholar]
  2. Brade H., Rietschel E. T. Alpha-2----4-interlinked 3-deoxy-D-manno-octulosonic acid disaccharide. A common constituent of enterobacterial lipopolysaccharides. Eur J Biochem. 1984 Dec 3;145(2):231–236. doi: 10.1111/j.1432-1033.1984.tb08543.x. [DOI] [PubMed] [Google Scholar]
  3. Brade L., Brandenburg K., Kuhn H. M., Kusumoto S., Macher I., Rietschel E. T., Brade H. The immunogenicity and antigenicity of lipid A are influenced by its physicochemical state and environment. Infect Immun. 1987 Nov;55(11):2636–2644. doi: 10.1128/iai.55.11.2636-2644.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brade L., Holst O., Kosma P., Zhang Y. X., Paulsen H., Krausse R., Brade H. Characterization of murine monoclonal and murine, rabbit, and human polyclonal antibodies against chlamydial lipopolysaccharide. Infect Immun. 1990 Jan;58(1):205–213. doi: 10.1128/iai.58.1.205-213.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fu Y., Baumann M., Kosma P., Brade L., Brade H. A synthetic glycoconjugate representing the genus-specific epitope of chlamydial lipopolysaccharide exhibits the same specificity as its natural counterpart. Infect Immun. 1992 Apr;60(4):1314–1321. doi: 10.1128/iai.60.4.1314-1321.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
  7. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  8. Holst O., Brade L., Kosma P., Brade H. Structure, serological specificity, and synthesis of artificial glycoconjugates representing the genus-specific lipopolysaccharide epitope of Chlamydia spp. J Bacteriol. 1991 Mar;173(6):1862–1866. doi: 10.1128/jb.173.6.1862-1866.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuhn H. M., Brade L., Appelmelk B. J., Kusumoto S., Rietschel E. T., Brade H. Characterization of the epitope specificity of murine monoclonal antibodies directed against lipid A. Infect Immun. 1992 Jun;60(6):2201–2210. doi: 10.1128/iai.60.6.2201-2210.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee R. T., Lee Y. C. Synthesis of 3-(2-aminoethylthio)propyl glycosides. Carbohydr Res. 1974 Oct;37(1):193–201. doi: 10.1016/s0008-6215(00)87074-3. [DOI] [PubMed] [Google Scholar]
  11. Nnalue N. A., Lind S. M., Lindberg A. A. The disaccharide L-alpha-D-heptose1-->7-L-alpha-D-heptose1-->of the inner core domain of Salmonella lipopolysaccharide is accessible to antibody and is the epitope of a broadly reactive monoclonal antibody. J Immunol. 1992 Oct 15;149(8):2722–2728. [PubMed] [Google Scholar]
  12. Rozalski A., Brade L., Kosma P., Appelmelk B. J., Krogmann C., Brade H. Epitope specificities of murine monoclonal and rabbit polyclonal antibodies against enterobacterial lipopolysaccharides of the Re chemotype. Infect Immun. 1989 Sep;57(9):2645–2652. doi: 10.1128/iai.57.9.2645-2652.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tacken A., Rietschel E. T., Brade H. Methylation analysis of the heptose/3-deoxy-D-manno-2-octulosonic acid region (inner core) of the lipopolysaccharide from Salmonella minnesota rough mutants. Carbohydr Res. 1986 Jul 1;149(2):279–291. doi: 10.1016/s0008-6215(00)90051-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES