Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Sep;61(9):3854–3862. doi: 10.1128/iai.61.9.3854-3862.1993

Aeromonas salmonicida grown in vivo.

R A Garduño 1, J C Thornton 1, W W Kay 1
PMCID: PMC281086  PMID: 8359906

Abstract

The virulent fish pathogen Aeromonas salmonicida was rapidly killed in vivo when restricted inside a diffusion chamber implanted intraperitoneally in rainbow trout. After a period of regrowth, the survivors had acquired resistance to host-mediated bacteriolysis, phagocytosis, and oxidative killing, properties which were subsequently lost by growth in vitro. Resistance to bacteriolysis and phagocytosis was associated with a newly acquired capsular layer revealed by acidic polysaccharide staining and electron microscopy. This capsular layer shielded the underlying, regular surface array (S-layer) from immunogold labeling with a primary antibody to the S-layer protein. Resistance to oxidative killing was mediated by a mechanism not associated with the presence of the capsular layer. An attenuated vaccine strain of A. salmonicida grown in vivo failed to express the capsular layer. Consequently, the in vivo-grown cells of this attenuated strain remained as sensitive to bacteriolysis, and as avidly adherent to macrophages, as the in vitro-grown cells. The importance of these new virulence determinants and their relation to the known virulence factors of A. salmonicida are discussed.

Full text

PDF
3854

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aricó B., Miller J. F., Roy C., Stibitz S., Monack D., Falkow S., Gross R., Rappuoli R. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6671–6675. doi: 10.1073/pnas.86.17.6671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bayer M. E. Visualization of the bacterial polysaccharide capsule. Curr Top Microbiol Immunol. 1990;150:129–157. doi: 10.1007/978-3-642-74694-9_7. [DOI] [PubMed] [Google Scholar]
  3. Belland R. J., Trust T. J. Synthesis, export, and assembly of Aeromonas salmonicida A-layer analyzed by transposon mutagenesis. J Bacteriol. 1985 Sep;163(3):877–881. doi: 10.1128/jb.163.3.877-881.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernardini M. L., Fontaine A., Sansonetti P. J. The two-component regulatory system ompR-envZ controls the virulence of Shigella flexneri. J Bacteriol. 1990 Nov;172(11):6274–6281. doi: 10.1128/jb.172.11.6274-6281.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks D. E., Trust T. J. Enhancement of bacterial adhesion by shear forces: characterization of the haemagglutination induced by Aeromonas salmonicida strain 438. J Gen Microbiol. 1983 Dec;129(12):3661–3669. doi: 10.1099/00221287-129-12-3661. [DOI] [PubMed] [Google Scholar]
  6. Brown M. R., Williams P. The influence of environment on envelope properties affecting survival of bacteria in infections. Annu Rev Microbiol. 1985;39:527–556. doi: 10.1146/annurev.mi.39.100185.002523. [DOI] [PubMed] [Google Scholar]
  7. Chart H., Trust T. J. Acquisition of iron by Aeromonas salmonicida. J Bacteriol. 1983 Nov;156(2):758–764. doi: 10.1128/jb.156.2.758-764.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chu S., Cavaignac S., Feutrier J., Phipps B. M., Kostrzynska M., Kay W. W., Trust T. J. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J Biol Chem. 1991 Aug 15;266(23):15258–15265. [PubMed] [Google Scholar]
  9. Cross A. S., Kelly N. M. Bacteria-phagocyte interactions: emerging tactics in an ancient rivalry. FEMS Microbiol Immunol. 1990 Dec;2(5-6):245–258. doi: 10.1111/j.1574-6968.1990.tb03526.x. [DOI] [PubMed] [Google Scholar]
  10. Cross A. S. The biologic significance of bacterial encapsulation. Curr Top Microbiol Immunol. 1990;150:87–95. doi: 10.1007/978-3-642-74694-9_5. [DOI] [PubMed] [Google Scholar]
  11. DiRita V. J., Mekalanos J. J. Genetic regulation of bacterial virulence. Annu Rev Genet. 1989;23:455–482. doi: 10.1146/annurev.ge.23.120189.002323. [DOI] [PubMed] [Google Scholar]
  12. Doig P., Emödy L., Trust T. J. Binding of laminin and fibronectin by the trypsin-resistant major structural domain of the crystalline virulence surface array protein of Aeromonas salmonicida. J Biol Chem. 1992 Jan 5;267(1):43–49. [PubMed] [Google Scholar]
  13. Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S274–S276. doi: 10.1093/cid/10.supplement_2.s274. [DOI] [PubMed] [Google Scholar]
  14. Finlay B. B., Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989 Jun;53(2):210–230. doi: 10.1128/mr.53.2.210-230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fox A. J., Curry A., Jones D. M., Demarco de Hormaeche R., Parsons N. J., Cole J. A., Smith H. The surface structure seen on gonococci after treatment with CMP-NANA is due to sialylation of surface lipopolysaccharide previously described as a 'capsule'. Microb Pathog. 1991 Sep;11(3):199–210. doi: 10.1016/0882-4010(91)90050-k. [DOI] [PubMed] [Google Scholar]
  16. Garduño R. A., Kay W. W. Interaction of the fish pathogen Aeromonas salmonicida with rainbow trout macrophages. Infect Immun. 1992 Nov;60(11):4612–4620. doi: 10.1128/iai.60.11.4612-4620.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garduño R. A., Lee E. J., Kay W. W. S-layer-mediated association of Aeromonas salmonicida with murine macrophages. Infect Immun. 1992 Oct;60(10):4373–4382. doi: 10.1128/iai.60.10.4373-4382.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garrote A., Bonet R., Merino S., Simon-Pujol M. D., Congregado F. Occurrence of a capsule in Aeromonas salmonicida. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):127–131. doi: 10.1016/0378-1097(92)90417-m. [DOI] [PubMed] [Google Scholar]
  19. Grenier D., Bélanger M. Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum. Infect Immun. 1991 Sep;59(9):3004–3008. doi: 10.1128/iai.59.9.3004-3008.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Groisman E. A., Saier M. H., Jr Salmonella virulence: new clues to intramacrophage survival. Trends Biochem Sci. 1990 Jan;15(1):30–33. doi: 10.1016/0968-0004(90)90128-x. [DOI] [PubMed] [Google Scholar]
  21. Hassan H. M. Determination of microbial damage caused by oxygen free radicals, and the protective role of superoxide dismutase. Methods Enzymol. 1984;105:404–412. doi: 10.1016/s0076-6879(84)05056-4. [DOI] [PubMed] [Google Scholar]
  22. Hirst I. D., Hastings T. S., Ellis A. E. Siderophore production by Aeromonas salmonicida. J Gen Microbiol. 1991 May;137(5):1185–1192. doi: 10.1099/00221287-137-5-1185. [DOI] [PubMed] [Google Scholar]
  23. Horstmann R. D. Target recognition failure by the nonspecific defense system: surface constituents of pathogens interfere with the alternative pathway of complement activation. Infect Immun. 1992 Mar;60(3):721–727. doi: 10.1128/iai.60.3.721-727.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jennings H. J. Capsular polysaccharides as vaccine candidates. Curr Top Microbiol Immunol. 1990;150:97–127. doi: 10.1007/978-3-642-74694-9_6. [DOI] [PubMed] [Google Scholar]
  25. Kay W. W., Phipps B. M., Ishiguro E. E., Trust T. J. Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida. J Bacteriol. 1985 Dec;164(3):1332–1336. doi: 10.1128/jb.164.3.1332-1336.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kay W. W., Trust T. J. Form and functions of the regular surface array (S-layer) of Aeromonas salmonicida. Experientia. 1991 May 15;47(5):412–414. [PubMed] [Google Scholar]
  27. Khavkin T. A morphogenetic study on host-pathogen interactions is needed for success in genetic analysis of microbial pathogenicity and the pathogenesis of infections. Rev Infect Dis. 1991 May-Jun;13(3):521–521. doi: 10.1093/clinids/13.3.521. [DOI] [PubMed] [Google Scholar]
  28. Lee C. A., Falkow S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4304–4308. doi: 10.1073/pnas.87.11.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee K. K., Ellis A. E. Glycerophospholipid:cholesterol acyltransferase complexed with lipopolysaccharide (LPS) is a major lethal exotoxin and cytolysin of Aeromonas salmonicida: LPS stabilizes and enhances toxicity of the enzyme. J Bacteriol. 1990 Sep;172(9):5382–5393. doi: 10.1128/jb.172.9.5382-5393.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leimeister-Wächter M., Domann E., Chakraborty T. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol. 1992 Feb;174(3):947–952. doi: 10.1128/jb.174.3.947-952.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mandrell R. E. Further antigenic similarities of Neisseria gonorrhoeae lipooligosaccharides and human glycosphingolipids. Infect Immun. 1992 Jul;60(7):3017–3020. doi: 10.1128/iai.60.7.3017-3020.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matsuoka K., Nomura K., Hoshino T. Mutagenic effects of brief exposure to bromodeoxyuridine on mouse FM3A cells. Cell Tissue Kinet. 1990 Sep;23(5):495–503. doi: 10.1111/j.1365-2184.1990.tb01141.x. [DOI] [PubMed] [Google Scholar]
  33. Maurelli A. T., Hromockyj A. E., Bernardini M. L. Environmental regulation of Shigella virulence. Curr Top Microbiol Immunol. 1992;180:95–116. doi: 10.1007/978-3-642-77238-2_5. [DOI] [PubMed] [Google Scholar]
  34. Melton A. R., Weiss A. A. Environmental regulation of expression of virulence determinants in Bordetella pertussis. J Bacteriol. 1989 Nov;171(11):6206–6212. doi: 10.1128/jb.171.11.6206-6212.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Miller J. F., Johnson S. A., Black W. J., Beattie D. T., Mekalanos J. J., Falkow S. Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J Bacteriol. 1992 Feb;174(3):970–979. doi: 10.1128/jb.174.3.970-979.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Miller J. F., Mekalanos J. J., Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science. 1989 Feb 17;243(4893):916–922. doi: 10.1126/science.2537530. [DOI] [PubMed] [Google Scholar]
  37. Moxon E. R., Kroll J. S. The role of bacterial polysaccharide capsules as virulence factors. Curr Top Microbiol Immunol. 1990;150:65–85. doi: 10.1007/978-3-642-74694-9_4. [DOI] [PubMed] [Google Scholar]
  38. Munn C. B., Ishiguro E. E., Kay W. W., Trust T. J. Role of surface components in serum resistance of virulent Aeromonas salmonicida. Infect Immun. 1982 Jun;36(3):1069–1075. doi: 10.1128/iai.36.3.1069-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nomura S., Fujino M., Yamakawa M., Kawahara E. Purification and characterization of salmolysin, an extracellular hemolytic toxin from Aeromonas salmonicida. J Bacteriol. 1988 Aug;170(8):3694–3702. doi: 10.1128/jb.170.8.3694-3702.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pettit R. K., Judd R. C. The interaction of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae with normal human serum. Mol Microbiol. 1992 Mar;6(6):729–734. doi: 10.1111/j.1365-2958.1992.tb01522.x. [DOI] [PubMed] [Google Scholar]
  41. Phipps B. M., Kay W. W. Immunoglobulin binding by the regular surface array of Aeromonas salmonicida. J Biol Chem. 1988 Jul 5;263(19):9298–9303. [PubMed] [Google Scholar]
  42. Porat R., Mosseri R., Kaplan E., Johns M. A., Shibolet S. Distribution of polysaccharide side chains of lipopolysaccharide determine resistance of Escherichia coli to the bactericidal activity of serum. J Infect Dis. 1992 May;165(5):953–956. doi: 10.1093/infdis/165.5.953. [DOI] [PubMed] [Google Scholar]
  43. Roberts I. S., Saunders F. K., Boulnois G. J. Bacterial capsules and interactions with complement and phagocytes. Biochem Soc Trans. 1989 Jun;17(3):462–464. doi: 10.1042/bst0170462. [DOI] [PubMed] [Google Scholar]
  44. SMITH H. The use of bacteria grown in vivo for studies on the basis of their pathogenicity. Annu Rev Microbiol. 1958;12:77–102. doi: 10.1146/annurev.mi.12.100158.000453. [DOI] [PubMed] [Google Scholar]
  45. Sen A., Leon M. A., Palchaudhuri S. Environmental signals induce major changes in virulence of Shigella spp. FEMS Microbiol Lett. 1991 Nov 15;68(2):231–236. doi: 10.1016/0378-1097(91)90132-t. [DOI] [PubMed] [Google Scholar]
  46. Simon G. L., Klempner M. S., Kasper D. L., Gorbach S. L. Alterations in opsonophagocytic killing by neutrophils of Bacteroides fragilis associated with animal and laboratory passage: effect of capsular polysaccharide. J Infect Dis. 1982 Jan;145(1):72–77. doi: 10.1093/infdis/145.1.72. [DOI] [PubMed] [Google Scholar]
  47. Smith H. Pathogenicity and the microbe in vivo. The 1989 Fred Griffith Review Lecture. J Gen Microbiol. 1990 Mar;136(3):377–393. doi: 10.1099/00221287-136-3-377. [DOI] [PubMed] [Google Scholar]
  48. Trust T. J., Kostrzynska M., Emödy L., Wadström T. High-affinity binding of the basement membrane protein collagen type IV to the crystalline virulence surface protein array of Aeromonas salmonicida. Mol Microbiol. 1993 Feb;7(4):593–600. doi: 10.1111/j.1365-2958.1993.tb01150.x. [DOI] [PubMed] [Google Scholar]
  49. Wetzler L. M., Barry K., Blake M. S., Gotschlich E. C. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun. 1992 Jan;60(1):39–43. doi: 10.1128/iai.60.1.39-43.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Williams P. Role of the cell envelope in bacterial adaptation to growth in vivo in infections. Biochimie. 1988 Aug;70(8):987–1011. doi: 10.1016/0300-9084(88)90263-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES