Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Oct;61(10):4045–4050. doi: 10.1128/iai.61.10.4045-4050.1993

Interaction of insulin with Pseudomonas pseudomallei.

D E Woods 1, A L Jones 1, P J Hill 1
PMCID: PMC281122  PMID: 7691742

Abstract

Pseudomonas pseudomallei is the causative agent of melioidosis, a disease being increasingly recognized as an important cause of morbidity and mortality in many regions of the world. An intriguing observation regarding melioidosis is that a significant percentage of patients who develop the disease have preexisting diabetes mellitus. In this regard, we have tested the hypothesis that insulin may modulate the growth of P. pseudomallei. We have demonstrated that insulin markedly inhibits the growth of P. pseudomallei in vitro and in vivo. The growth rate of P. pseudomallei in minimal medium containing human recombinant insulin was significantly lower than that of control cultures containing no insulin. P. pseudomallei grew at an increased rate in serum samples obtained from diabetic rats compared with that in serum samples obtained from control animals. When the insulin level was restored by the addition of human recombinant insulin, the growth rate was reduced to a level similar to that seen in control serum. P. pseudomallei also grew significantly better in insulin-depleted human serum than control human serum. 125I-insulin binding studies demonstrated that P. pseudomallei possesses a specific, high-affinity binding site for human insulin. In in vivo studies, rats made diabetic by streptozotocin injection (80 mg/kg of body weight, intraperitoneally) were significantly more susceptible to P. pseudomallei septicemia than control rats. Thus, it appears that serum insulin levels may play a significant role in modulating the pathogenesis of P. pseudomallei septicemic infections.

Full text

PDF
4045

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. F., Appleman M. D., Cosgrove M. M. A case of melioidosis originating in North America. Am Rev Respir Dis. 1986 Jul;134(1):170–171. doi: 10.1164/arrd.1986.134.1.170. [DOI] [PubMed] [Google Scholar]
  2. Barnett A. H. Some recent advances in non-communicable diseases in the tropics. 2. Diabetes mellitus in the tropics. Trans R Soc Trop Med Hyg. 1991 May-Jun;85(3):327–331. doi: 10.1016/0035-9203(91)90278-7. [DOI] [PubMed] [Google Scholar]
  3. COLLING M., NIGG C., HECKLY R. J. Toxins of Pseudomonas pseudomallei. I. Production in vitro. J Bacteriol. 1958 Oct;76(4):422–426. doi: 10.1128/jb.76.4.422-426.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cash H. A., Woods D. E., McCullough B., Johanson W. G., Jr, Bass J. A. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis. 1979 Mar;119(3):453–459. doi: 10.1164/arrd.1979.119.3.453. [DOI] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Insulin--receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1264–1268. doi: 10.1073/pnas.68.6.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuatrecasas P. Properties of the insulin receptor isolated from liver and fat cell membranes. J Biol Chem. 1972 Apr 10;247(7):1980–1991. [PubMed] [Google Scholar]
  7. Dance D. A. Melioidosis: the tip of the iceberg? Clin Microbiol Rev. 1991 Jan;4(1):52–60. doi: 10.1128/cmr.4.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HECKLY R. J., NIGG C. Toxins of Pseudomonas pseudomallei. II. Characterization. J Bacteriol. 1958 Oct;76(4):427–436. doi: 10.1128/jb.76.4.427-436.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henry N. K., McLimans C. A., Wright A. J., Thompson R. L., Wilson W. R., Washington J. A., 2nd Microbiological and clinical evaluation of the isolator lysis-centrifugation blood culture tube. J Clin Microbiol. 1983 May;17(5):864–869. doi: 10.1128/jcm.17.5.864-869.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kanai K., Dejsirilert S. Pseudomonas pseudomallei and melioidosis, with special reference to the status in Thailand. Jpn J Med Sci Biol. 1988 Aug;41(4):123–157. doi: 10.7883/yoken1952.41.123. [DOI] [PubMed] [Google Scholar]
  11. Le Roith D., Shiloach J., Roth J., Lesniak M. A. Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6184–6188. doi: 10.1073/pnas.77.10.6184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LeRoith D., Shiloach J., Heffron R., Rubinovitz C., Tanenbaum R., Roth J. Insulin-related material in microbes: similarities and differences from mammalian insulins. Can J Biochem Cell Biol. 1985 Aug;63(8):839–849. doi: 10.1139/o85-106. [DOI] [PubMed] [Google Scholar]
  13. LeRoith D., Shiloach J., Roth J., Lesniak M. A. Insulin or a closely related molecule is native to Escherichia coli. J Biol Chem. 1981 Jul 10;256(13):6533–6536. [PubMed] [Google Scholar]
  14. Lee D. S., Griffiths B. W. Comparative studies of Iodo-bead and chloramine-T methods for the radioiodination of human alpha-fetoprotein. J Immunol Methods. 1984 Nov 16;74(1):181–189. doi: 10.1016/0022-1759(84)90379-x. [DOI] [PubMed] [Google Scholar]
  15. Lenard J. Mammalian hormones in microbial cells. Trends Biochem Sci. 1992 Apr;17(4):147–150. doi: 10.1016/0968-0004(92)90323-2. [DOI] [PubMed] [Google Scholar]
  16. Lipford G. B., Feng Q., Wright G. L., Jr A method for separating bound versus unbound label during radioiodination. Anal Biochem. 1990 May 15;187(1):133–135. doi: 10.1016/0003-2697(90)90430-h. [DOI] [PubMed] [Google Scholar]
  17. Luo G., Niesel D. W., Shaban R. A., Grimm E. A., Klimpel G. R. Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect Immun. 1993 Mar;61(3):830–835. doi: 10.1128/iai.61.3.830-835.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Markwell M. A. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal Biochem. 1982 Sep 15;125(2):427–432. doi: 10.1016/0003-2697(82)90025-2. [DOI] [PubMed] [Google Scholar]
  19. Mays E. E., Ricketts E. A. Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest. 1975 Aug;68(2):261–263. doi: 10.1378/chest.68.2.261. [DOI] [PubMed] [Google Scholar]
  20. Porat R., Clark B. D., Wolff S. M., Dinarello C. A. Enhancement of growth of virulent strains of Escherichia coli by interleukin-1. Science. 1991 Oct 18;254(5030):430–432. doi: 10.1126/science.1833820. [DOI] [PubMed] [Google Scholar]
  21. Puthucheary S. D., Parasakthi N., Lee M. K. Septicaemic melioidosis: a review of 50 cases from Malaysia. Trans R Soc Trop Med Hyg. 1992 Nov-Dec;86(6):683–685. doi: 10.1016/0035-9203(92)90191-e. [DOI] [PubMed] [Google Scholar]
  22. Sexton M. M., Goebel L. A., Godfrey A. J., Choawagul W., White N. J., Woods D. E. Ribotype analysis of Pseudomonas pseudomallei isolates. J Clin Microbiol. 1993 Feb;31(2):238–243. doi: 10.1128/jcm.31.2.238-243.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tancrède G., Rousseau-Migneron S., Nadeau A. Long-term changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Pathol. 1983 Apr;64(2):117–123. [PMC free article] [PubMed] [Google Scholar]
  24. Yoon J. W., McClintock P. R., Bachurski C. J., Longstreth J. D., Notkins A. L. Virus-induced diabetes mellitus. No evidence for immune mechanisms in the destruction of beta-cells by the D-variant of encephalomyocarditis virus. Diabetes. 1985 Sep;34(9):922–925. doi: 10.2337/diab.34.9.922. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES