Abstract
The adherence of pseudomonal species was investigated by using a newly developed radiometric dacron fiber microcolumn assay. Pseudomonas aeruginosa, P. stutzeri, and Xanthomonas maltophilia were more adherent (approximately 20%) than P. pseudomallei, P. fluorescens, and P. cepacia (approximately 10%). Mucoid strains of P. aeruginosa were consistently more adherent than nonmucoid strains (30% versus 20%). Alginase was shown to inhibit the adherence of mucoid but not nonmucoid P. aeruginosa. Monoclonal antibodies to alginate were also shown to inhibit the adherence of mucoid but not nonmucoid P. aeruginosa. In addition, antibiotics active against P. aeruginosa were shown to inhibit the adherence of both mucoid and nonmucoid strains. Furthermore, synergism between dyadic combinations of monoclonal antibodies and antibiotic (ciprofloxacin), as well as alginase and antibiotic, was also observed. These results indicate that bacterial alginate has an intrinsic role in the adherence of mucoid P. aeruginosa and may have evolved not only for protection against dehydration in the water and soil ecosystem of this bacterium, but also as a means of attaching to soil substrates in the same ecosystem to enhance survival. They also suggest that synergistic combinations of antibiotics with alginase or monoclonal antibodies to alginate may be of value in the therapy of some pseudomonal infections.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkan M. L., Beachey E. H. Excretion of lipoteichoic acid by group A streptococci. Influence of penicillin on excretion and loss of ability to adhere to human oral mucosal cells. J Clin Invest. 1978 Mar;61(3):671–677. doi: 10.1172/JCI108979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ames P., DesJardins D., Pier G. B. Opsonophagocytic killing activity of rabbit antibody to Pseudomonas aeruginosa mucoid exopolysaccharide. Infect Immun. 1985 Aug;49(2):281–285. doi: 10.1128/iai.49.2.281-285.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baltimore R. S., Mitchell M. Immunologic investigations of mucoid strains of Pseudomonas aeruginosa: comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. J Infect Dis. 1980 Feb;141(2):238–247. doi: 10.1093/infdis/141.2.238. [DOI] [PubMed] [Google Scholar]
- Bryan L. E., Kureishi A., Rabin H. R. Detection of antibodies to Pseudomonas aeruginosa alginate extracellular polysaccharide in animals and cystic fibrosis patients by enzyme-linked immunosorbent assay. J Clin Microbiol. 1983 Aug;18(2):276–282. doi: 10.1128/jcm.18.2.276-282.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crouch A. A., Seow W. K., Whitman L. M., Smith S. E., Thong Y. H. Inhibition of adherence of Giardia intestinalis by human neutrophils and monocytes. Trans R Soc Trop Med Hyg. 1991 May-Jun;85(3):375–379. doi: 10.1016/0035-9203(91)90297-c. [DOI] [PubMed] [Google Scholar]
- Crouch A. A., Seow W. K., Whitman L. M., Thong Y. H. Effect of human milk and infant milk formulae on adherence of Giardia intestinalis. Trans R Soc Trop Med Hyg. 1991 Sep-Oct;85(5):617–619. doi: 10.1016/0035-9203(91)90366-7. [DOI] [PubMed] [Google Scholar]
- Crouch A. A., Seow W. K., Whitman L. M., Thong Y. H. Sensitivity in vitro of Giardia intestinalis to dyadic combinations of azithromycin, doxycycline, mefloquine, tinidazole and furazolidone. Trans R Soc Trop Med Hyg. 1990 Mar-Apr;84(2):246–248. doi: 10.1016/0035-9203(90)90273-h. [DOI] [PubMed] [Google Scholar]
- Doig P., Smith N. R., Todd T., Irvin R. T. Characterization of the binding of Pseudomonas aeruginosa alginate to human epithelial cells. Infect Immun. 1987 Jun;55(6):1517–1522. doi: 10.1128/iai.55.6.1517-1522.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eftekhar F., Speert D. P. Alginase treatment of mucoid Pseudomonas aeruginosa enhances phagocytosis by human monocyte-derived macrophages. Infect Immun. 1988 Nov;56(11):2788–2793. doi: 10.1128/iai.56.11.2788-2793.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans L. R., Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol. 1973 Nov;116(2):915–924. doi: 10.1128/jb.116.2.915-924.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feigin R. D., Shearer W. T. Opportunistic infection in children. III. In the normal host. J Pediatr. 1975 Dec;87(6 Pt 1):852–866. doi: 10.1016/s0022-3476(75)80893-6. [DOI] [PubMed] [Google Scholar]
- Feltham R. K., Power A. K., Pell P. A., Sneath P. A. A simple method for storage of bacteria at--76 degrees C. J Appl Bacteriol. 1978 Apr;44(2):313–316. doi: 10.1111/j.1365-2672.1978.tb00804.x. [DOI] [PubMed] [Google Scholar]
- Geers T. A., Baker N. R. The effect of sublethal concentrations of aminoglycosides on adherence of Pseudomonas aeruginosa to hamster tracheal epithelium. J Antimicrob Chemother. 1987 May;19(5):561–568. doi: 10.1093/jac/19.5.561. [DOI] [PubMed] [Google Scholar]
- Govan J. R., Harris G. S. Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiol Sci. 1986 Oct;3(10):302–308. [PubMed] [Google Scholar]
- Holmgren J., Svennerholm A. M., Ahrén C. Nonimmunoglobulin fraction of human milk inhibits bacterial adhesion (hemagglutination) and enterotoxin binding of Escherichia coli and Vibrio cholerae. Infect Immun. 1981 Jul;33(1):136–141. doi: 10.1128/iai.33.1.136-141.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaacson R. E., Dean E. A., Morgan R. L., Moon H. W. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrheal disease by vaccinating dams with purified K99 or 987P pili: antibody production in response to vaccination. Infect Immun. 1980 Aug;29(2):824–826. doi: 10.1128/iai.29.2.824-826.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kristiansen B. E., Rustad L., Spanne O., Bjorvatn B. Effect of subminimal inhibitory concentrations of antimicrobial agents on the piliation and adherence of Neisseria meningitidis. Antimicrob Agents Chemother. 1983 Nov;24(5):731–734. doi: 10.1128/aac.24.5.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mai G. T., Seow W. K., McCormack J. G., Thong Y. H. Direct activation of human polymorphonuclear leukocytes by Pseudomonas aeruginosa. Int Arch Allergy Appl Immunol. 1989;90(4):358–363. doi: 10.1159/000235053. [DOI] [PubMed] [Google Scholar]
- Mai G. T., Seow W. K., McCormack J. G., Thong Y. H. In vitro immunosuppressive and anti-phagocytic properties of the exopolysaccharide of mucoid strains of Pseudomonas aeruginosa. Int Arch Allergy Appl Immunol. 1990;92(2):105–112. doi: 10.1159/000235199. [DOI] [PubMed] [Google Scholar]
- Marcus H., Baker N. R. Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium. Infect Immun. 1985 Mar;47(3):723–729. doi: 10.1128/iai.47.3.723-729.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meshulam T., Obedeanu N., Merzbach D., Sobel J. D. Phagocytosis of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Clin Immunol Immunopathol. 1984 Aug;32(2):151–165. doi: 10.1016/0090-1229(84)90117-x. [DOI] [PubMed] [Google Scholar]
- Neu H. C. The role of Pseudomonas aeruginosa in infections. J Antimicrob Chemother. 1983 May;11 (Suppl B):1–13. doi: 10.1093/jac/11.suppl_b.1. [DOI] [PubMed] [Google Scholar]
- Oliver A. M., Weir D. M. Inhibition of bacterial binding to mouse macrophages by Pseudomonas alginate. J Clin Lab Immunol. 1983 Apr;10(4):221–224. [PubMed] [Google Scholar]
- Pier G. B., Grout M., Desjardins D. Complement deposition by antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide (MEP) and by non-MEP specific opsonins. J Immunol. 1991 Sep 15;147(6):1869–1876. [PubMed] [Google Scholar]
- Pier G. B. Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. J Infect Dis. 1985 Apr;151(4):575–580. doi: 10.1093/infdis/151.4.575. [DOI] [PubMed] [Google Scholar]
- Pier G. B., Small G. J., Warren H. B. Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science. 1990 Aug 3;249(4968):537–540. doi: 10.1126/science.2116663. [DOI] [PubMed] [Google Scholar]
- Ramphal R., Pier G. B. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect Immun. 1985 Jan;47(1):1–4. doi: 10.1128/iai.47.1.1-4.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruhen R. W., Holt P. G., Papadimitriou J. M. Antiphagocytic effect of Pseudomonas aeruginosa exopolysaccharide. J Clin Pathol. 1980 Dec;33(12):1221–1222. doi: 10.1136/jcp.33.12.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber J. R., Pier G. B., Grout M., Nixon K., Patawaran M. Induction of opsonic antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide by an anti-idiotypic monoclonal antibody. J Infect Dis. 1991 Sep;164(3):507–514. doi: 10.1093/infdis/164.3.507. [DOI] [PubMed] [Google Scholar]
- Schwarzmann S., Boring J. R. Antiphagocytic Effect of Slime from a Mucoid Strain of Pseudomonas aeruginosa. Infect Immun. 1971 Jun;3(6):762–767. doi: 10.1128/iai.3.6.762-767.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibl A. M. Effect of antibiotics on adherence of microorganisms to epithelial cell surfaces. Rev Infect Dis. 1985 Jan-Feb;7(1):51–65. doi: 10.1093/clinids/7.1.51. [DOI] [PubMed] [Google Scholar]
- Simpson J. A., Smith S. E., Dean R. T. Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J Gen Microbiol. 1988 Jan;134(1):29–36. doi: 10.1099/00221287-134-1-29. [DOI] [PubMed] [Google Scholar]
- Thong Y. H., Currell J. M. Development of a microassay technique for neutrophil adherence. J Immunol Methods. 1983 Oct 14;63(2):229–236. doi: 10.1016/0022-1759(83)90427-1. [DOI] [PubMed] [Google Scholar]
- Tramont E. C. Inhibition of adherence of Neisseria gonorrhoeae by human genital secretions. J Clin Invest. 1977 Jan;59(1):117–124. doi: 10.1172/JCI108608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vuddhakul V., McCormack J. G., Seow W. K., Smith S. E., Thong Y. H. Inhibition of adherence of Candida albicans by conventional and experimental antifungal drugs. J Antimicrob Chemother. 1988 Jun;21(6):755–763. doi: 10.1093/jac/21.6.755. [DOI] [PubMed] [Google Scholar]
- Vuddhakul V., McCormack J. G., Seow W. K., Thong Y. H. Inhibitory effects of human neutrophil granules and oxygen radicals on adherence of Candida albicans. J Med Microbiol. 1989 Jul;29(3):181–187. doi: 10.1099/00222615-29-3-181. [DOI] [PubMed] [Google Scholar]
- WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
- Williams R. C., Gibbons R. J. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science. 1972 Aug 25;177(4050):697–699. doi: 10.1126/science.177.4050.697. [DOI] [PubMed] [Google Scholar]
