Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Dec;61(12):5417–5420. doi: 10.1128/iai.61.12.5417-5420.1993

Comparative immunochemistry of two fragments from domains Ib and III of Pseudomonas aeruginosa exotoxin A.

K Rutault 1, M J Vacheron 1, M Guinand 1, G Michel 1
PMCID: PMC281335  PMID: 8225617

Abstract

Two rabbit polyclonal antisera have been produced by immunization with two fragments corresponding to sequences 392 to 404 and 392 to 613 of Pseudomonas aeruginosa exotoxin A. Both antisera inhibit the ADP-ribosyltransferase activity of exotoxin A but do not inhibit its NAD-glycohydrolase activity. In addition, only the second antiserum was capable of neutralizing exotoxin A cytotoxicity in cell culture and in vivo. Consequently, the common sequence 392 to 404 of the two fragments is not a neutralizing epitope and such an epitope should reside within residues 405 to 613 of exotoxin A. The sequence 392 to 404 was shown to be hidden in the native molecule, and the results suggest that this sequence is most likely in close proximity to residues involved in eukaryotic elongation factor 2 binding.

Full text

PDF
5417

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allured V. S., Collier R. J., Carroll S. F., McKay D. B. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1320–1324. doi: 10.1073/pnas.83.5.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourdenet S., Doyonnas R., Vacheron M. J., Guinand M., Fasciotto B., Ristic A., Michel G., Cozzone A. J., Durkin J. P., Whitfield J. F. The cytotoxicity of Pseudomonas exotoxin A, inactivated by modification of the cell-binding domain I, is restored when conjugated to an erythroid cell-specific targeting agent. Cancer Lett. 1990 Apr 20;50(2):121–127. doi: 10.1016/0304-3835(90)90241-o. [DOI] [PubMed] [Google Scholar]
  3. Bourdenet S., Vacheron M. J., Guinand M., Michel G., Arminjon F. Biochemical and immunochemical studies of proteolytic fragments of exotoxin A from Pseudomonas aeruginosa. Eur J Biochem. 1990 Sep 11;192(2):379–385. doi: 10.1111/j.1432-1033.1990.tb19238.x. [DOI] [PubMed] [Google Scholar]
  4. Chaudhary V. K., Jinno Y., FitzGerald D., Pastan I. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci U S A. 1990 Jan;87(1):308–312. doi: 10.1073/pnas.87.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung D. W., Collier R. J. Enzymatically active peptide from the adenosine diphosphate-ribosylating toxin of Pseudomonas aeruginosa. Infect Immun. 1977 Jun;16(3):832–841. doi: 10.1128/iai.16.3.832-841.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gray G. L., Smith D. H., Baldridge J. S., Harkins R. N., Vasil M. L., Chen E. Y., Heyneker H. L. Cloning, nucleotide sequence, and expression in Escherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1984 May;81(9):2645–2649. doi: 10.1073/pnas.81.9.2645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guidi-Rontani C., Collier R. J. Exotoxin A of Pseudomonas aeruginosa: evidence that domain I functions in receptor binding. Mol Microbiol. 1987 Jul;1(1):67–72. doi: 10.1111/j.1365-2958.1987.tb00528.x. [DOI] [PubMed] [Google Scholar]
  8. Hwang J., Chen M. S. Structure and function relationship of Pseudomonas exotoxin A. An immunochemical study. J Biol Chem. 1989 Feb 5;264(4):2379–2384. [PubMed] [Google Scholar]
  9. Hwang J., Fitzgerald D. J., Adhya S., Pastan I. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell. 1987 Jan 16;48(1):129–136. doi: 10.1016/0092-8674(87)90363-1. [DOI] [PubMed] [Google Scholar]
  10. Iglewski B. H., Liu P. V., Kabat D. Mechanism of action of Pseudomonas aeruginosa exotoxin Aiadenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun. 1977 Jan;15(1):138–144. doi: 10.1128/iai.15.1.138-144.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kessler S. P., Galloway D. R. Pseudomonas aeruginosa exotoxin A interaction with eucaryotic elongation factor 2. Role of the His426 residue. J Biol Chem. 1992 Sep 25;267(27):19107–19111. [PubMed] [Google Scholar]
  12. Kohzuki T., Eguchi Y., Kato M., Irie K., Ohtsuka H., Higuchi A., Noguchi H. Protective activity of anti-exotoxin A monoclonal antibody against mice infected with toxin-producing Pseudomonas aeruginosa. J Infect Dis. 1993 Jan;167(1):119–125. doi: 10.1093/infdis/167.1.113. [DOI] [PubMed] [Google Scholar]
  13. Leppla S. H., Martin O. C., Muehl L. A. The exotoxin P. aeruginosa: a proenzyme having an unusual mode of activation. Biochem Biophys Res Commun. 1978 Mar 30;81(2):532–538. doi: 10.1016/0006-291x(78)91567-x. [DOI] [PubMed] [Google Scholar]
  14. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  15. Ogata M., Chaudhary V. K., Pastan I., FitzGerald D. J. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. J Biol Chem. 1990 Nov 25;265(33):20678–20685. [PubMed] [Google Scholar]
  16. Ogata M., Fryling C. M., Pastan I., FitzGerald D. J. Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem. 1992 Dec 15;267(35):25396–25401. [PubMed] [Google Scholar]
  17. Ogata M., Pastan I., FitzGerald D. Analysis of Pseudomonas exotoxin activation and conformational changes by using monoclonal antibodies as probes. Infect Immun. 1991 Jan;59(1):407–414. doi: 10.1128/iai.59.1.407-414.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohtsuka H., Horigome K., Higuchi A., Nomura N., Ochi H., Yokota S., Kohzuki T., Noguchi H. Binding of monoclonal antibody specific for domain Ia/II of Pseudomonas aeruginosa exotoxin A at pH 4 strongly neutralizes exotoxin A-induced cytotoxicity in cell culture and in vivo. Infect Immun. 1992 Mar;60(3):1061–1068. doi: 10.1128/iai.60.3.1061-1068.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olson J. C., Hamood A. N., Vincent T. S., Beachey E. H., Iglewski B. H. Identification of functional epitopes of Pseudomonas aeruginosa exotoxin A using synthetic peptides and subclone products. Mol Immunol. 1990 Oct;27(10):981–993. doi: 10.1016/0161-5890(90)90121-f. [DOI] [PubMed] [Google Scholar]
  20. Rutault K., Coin D., Vacheron M. J., Guinand M., Wallach J., Michel G. Identification of a small epitope in domain Ib of Pseudomonas aeruginosa exotoxin A that elicits enzyme-neutralizing antibodies. FEMS Microbiol Immunol. 1992 Jul;4(5):267–272. doi: 10.1111/j.1574-6968.1992.tb05005.x. [DOI] [PubMed] [Google Scholar]
  21. Van Ness B. G., Howard J. B., Bodley J. W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem. 1980 Nov 25;255(22):10710–10716. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES