Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1978 Mar;42(1):194–236. doi: 10.1128/mr.42.1.194-236.1978

Transfection of Enterobacteriaceae and its applications.

R Benzinger
PMCID: PMC281423  PMID: 111022

Full text

PDF
194

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMMANN J., DELIUS H., HOFSCHNEIDER P. H. ISOLATION AND PROPERTIES OF AN INTACT PHAGE-SPECIFIC REPLICATIVE FORM OF RNA PHAGE M12. J Mol Biol. 1964 Dec;10:557–561. doi: 10.1016/s0022-2836(64)80079-6. [DOI] [PubMed] [Google Scholar]
  2. Abrahams P. J., Van der Eb A. J. In vitro transformation of rat and mouse cells by DNA from simian virus 40. J Virol. 1975 Jul;16(1):206–209. doi: 10.1128/jvi.16.1.206-209.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahmad A. F., Leis U. Transfection with heteroduplex SPP1 DNA: a pyrimidine dimer induced influence on the conversion pattern. Mol Gen Genet. 1975 Aug 5;139(2):103–119. doi: 10.1007/BF00264691. [DOI] [PubMed] [Google Scholar]
  4. Alegria A. H., Kahan F. M., Marmur J. A new assay for phage hydroxymethylases and its use in Bacillus subtilis transfection. Biochemistry. 1968 Sep;7(9):3179–3186. doi: 10.1021/bi00849a021. [DOI] [PubMed] [Google Scholar]
  5. Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aoki S., Takebe I. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus ribonucleic acid. Virology. 1969 Nov;39(3):439–448. doi: 10.1016/0042-6822(69)90092-0. [DOI] [PubMed] [Google Scholar]
  7. Armentrout R. W., Rutberg L. Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage phi 105 by marker rescue. J Virol. 1970 Dec;6(6):760–767. doi: 10.1128/jvi.6.6.760-767.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Arwert F., Venema G. Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uur+ and uur- strains. Mol Gen Genet. 1974;128(1):55–72. doi: 10.1007/BF00267294. [DOI] [PubMed] [Google Scholar]
  9. BENZINGER R., HOFSCHNEIDER P. H. BIOLOGICAL MELTING CURVES FOR THE "REPLICATIVE FORM" OF PHI X 174 DNA. Z Vererbungsl. 1963 Nov 21;94:316–321. doi: 10.1007/BF00894775. [DOI] [PubMed] [Google Scholar]
  10. BRENNER S., STENT G. S. Bacteriophage growth in protoplasts of Bacillus megaterium. Biochim Biophys Acta. 1955 Aug;17(4):473–475. doi: 10.1016/0006-3002(55)90409-1. [DOI] [PubMed] [Google Scholar]
  11. BRODY E., COLEMAN L., MACKAL R. P., WERNINGHAUS B., EVANS E. A., Jr PROPERTIES OF INFECTIOUS DEOXYRIBONUCLEIC ACID FROM T1 AND LAMBDA BACTERIOPHAGE. J Biol Chem. 1964 Jan;239:285–289. [PubMed] [Google Scholar]
  12. BURTON A., SINSHEIMER R. L. PROCESS OF INFECTION WITH PHI-X174: EFFECT OF EXONUCLEASES ON THE REPLICATIVE FORM. Science. 1963 Nov 15;142(3594):962–963. doi: 10.1126/science.142.3594.962. [DOI] [PubMed] [Google Scholar]
  13. Bailey A. D., Fry B. A. Effect of ribonucleic acids on the infectivity of phage lambda DNA. Biochim Biophys Acta. 1968 Oct 29;166(3):726–728. doi: 10.1016/0005-2787(68)90386-9. [DOI] [PubMed] [Google Scholar]
  14. Baltz R. H. Infectious DNA of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):425–437. doi: 10.1016/0022-2836(71)90146-x. [DOI] [PubMed] [Google Scholar]
  15. Barnhart B. J. Kinetics of bacteriophage lambda deoxyribonucleic acid infection of Escherichia coli. J Bacteriol. 1965 Dec;90(6):1617–1623. doi: 10.1128/jb.90.6.1617-1623.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Baumann L., Benz W. C., Wright A., Goldberg E. B. Inactivation of urea-treated phage T4 by phosphatidylglycerol. Virology. 1970 Jun;41(2):356–364. doi: 10.1016/0042-6822(70)90088-7. [DOI] [PubMed] [Google Scholar]
  17. Baur S., Vitetta E. S., Sherr C. J., Schenkein I., Uhr J. W. Isolation of heavy and light chains of immunoglobulin from the surfaces of lymphoid cells. J Immunol. 1971 Apr;106(4):1133–1135. [PubMed] [Google Scholar]
  18. Bautz E. K., Bautz F. A., Rüger W. A biological assay for in vitro repair of phage T4 DNA. Cold Spring Harb Symp Quant Biol. 1968;33:59–63. doi: 10.1101/sqb.1968.033.01.011. [DOI] [PubMed] [Google Scholar]
  19. Bautz E. K., Reilly E. Gene-specific messenger RNA: isolation by the deletion method. Science. 1966 Jan 21;151(3708):328–330. doi: 10.1126/science.151.3708.328. [DOI] [PubMed] [Google Scholar]
  20. Bautz F. A., Bautz E. K. Mapping of deletions in a non-essential region of the phage T4 genome. J Mol Biol. 1967 Sep 14;28(2):345–355. doi: 10.1016/s0022-2836(67)80014-7. [DOI] [PubMed] [Google Scholar]
  21. Bautz F. A., Bautz E. K. Transformation in phage T4: minmal recognition length between donor and recipient DNA. Genetics. 1967 Dec;57(4):887–895. doi: 10.1093/genetics/57.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bautz F. A. Expression of the rII function by native transforming DNA of bacteriophage T4. Genetics. 1966 May;53(5):913–921. doi: 10.1093/genetics/53.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bayer M. E. Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J Virol. 1968 Apr;2(4):346–356. doi: 10.1128/jvi.2.4.346-356.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bayer M. E. Ultrastructure and organization of the bacterial envelope. Ann N Y Acad Sci. 1974 May 10;235(0):6–28. doi: 10.1111/j.1749-6632.1974.tb43254.x. [DOI] [PubMed] [Google Scholar]
  25. Benbow R. M., Zuccarelli A. J., Sinsheimer R. L. Recombinant DNA molecules of bacteriophage phi chi174. Proc Natl Acad Sci U S A. 1975 Jan;72(1):235–239. doi: 10.1073/pnas.72.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Benzinger R., Delius H., Janenisch R., Hofschneider P. H. Infectious nucleic acids of Escherichia coli bacteriophages. 10. Preparation and properties of Escherichia coli competent for infectious DNA from bacteriophages phi X 174 and M 13 and RNA from bacteriophage M 12. Eur J Biochem. 1967 Nov;2(4):414–428. doi: 10.1111/j.1432-1033.1967.tb00154.x. [DOI] [PubMed] [Google Scholar]
  27. Benzinger R., Enquist L. W., Skalka A. Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec minus spheroplasts measured with different forms of bacteriophage DNA. J Virol. 1975 Apr;15(4):861–871. doi: 10.1128/jvi.15.4.861-871.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Benzinger R., Kleber I., Huskey R. Transfection of Escherichia coli spheroplasts. I. General facilitation of double-stranded deoxyribonucleic acid infectivity by protamine sulfate. J Virol. 1971 May;7(5):646–650. doi: 10.1128/jvi.7.5.646-650.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Benzinger R., Kleber I. Transfection of Escherichia coli and Salmonella typhimurium spheroplasts: host-controlled restriction of infective bacteriophage P22 deoxyribonucleic acid. J Virol. 1971 Aug;8(2):197–202. doi: 10.1128/jvi.8.2.197-202.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Benzinger R. Restriction of infectious bacteriophage fd DNA's and an assay for in vitro host-controlled restriction and modification. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1294–1299. doi: 10.1073/pnas.59.4.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Benzinger R., Scheible P. Transfection of Escherichia coli spheroplasts. IV. Transfection of rec+ and rec minus spheroplasts by native, denatured, and renatured T5 bacteriophage DNA after repair of single-strand breaks by polynucleotide ligase. J Virol. 1974 May;13(5):960–966. doi: 10.1128/jvi.13.5.960-966.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Berg D. E., Jackson D. A., Mertz J. E. Isolation of a lambda dv plasmid carrying the bacterial gal operon. J Virol. 1974 Nov;14(5):1063–1069. doi: 10.1128/jvi.14.5.1063-1069.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Birnboim H. C. Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids. J Bacteriol. 1966 Mar;91(3):1004–1011. doi: 10.1128/jb.91.3.1004-1011.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Bishop D. H., Claybrook J. R., Pace N. R., Spiegelman S. An analysis by gel electrophoresis of Q-beta-RNA complexes formed during the latent period of an in vitro synthesis. Proc Natl Acad Sci U S A. 1967 May;57(5):1474–1481. doi: 10.1073/pnas.57.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Blattner F. R., Williams B. G., Blechl A. E., Denniston-Thompson K., Faber H. E., Furlong L., Grunwald D. J., Kiefer D. O., Moore D. D., Schumm J. W. Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science. 1977 Apr 8;196(4286):161–169. doi: 10.1126/science.847462. [DOI] [PubMed] [Google Scholar]
  36. Bode V. C., Gillin F. D. The arrangement of DNA in lambda phage heads. I. Biological consequences of micrococcal nuclease attack on a portion of the chromosome exposed in tailless heads. J Mol Biol. 1971 Dec 28;62(3):493–502. doi: 10.1016/0022-2836(71)90150-1. [DOI] [PubMed] [Google Scholar]
  37. Bode V. C., Kaiser A. D. Changes in the structure and activity of lambda DNA in a superinfected immune bacterium. J Mol Biol. 1965 Dec;14(2):399–417. doi: 10.1016/s0022-2836(65)80190-5. [DOI] [PubMed] [Google Scholar]
  38. Boling M. E., Setlow J. K., Allison D. P. Bacteriophage of Haemophilus influenzae. I. Differences between infection by whole phage, extracted phage DNA and prophage DNA extracted from lysogenic cells. J Mol Biol. 1972 Feb 14;63(3):335–348. doi: 10.1016/0022-2836(72)90431-7. [DOI] [PubMed] [Google Scholar]
  39. Boling M. E., Setlow J. K. Marker rescue in Haemophilus influenzae bacteriophage. J Virol. 1974 Nov;14(5):1056–1062. doi: 10.1128/jvi.14.5.1056-1062.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Borrias W. E., Van de Pol J. H. Genetic complementation between bacteriophage oX174 DNA molecules in spheroplasts. Mol Gen Genet. 1972;114(1):59–67. doi: 10.1007/BF00268747. [DOI] [PubMed] [Google Scholar]
  41. Bott K. F., Wilson G. A. Metabolic and nutritional factors influencing the development of competence for transfection of Bacillus subtilis. Bacteriol Rev. 1968 Dec;32(4 Pt 1):370–378. [PMC free article] [PubMed] [Google Scholar]
  42. Bowman B. U. Biological activity of phi-X DNA. I. Inhibition of infectivity by streptomycin. J Mol Biol. 1967 May 14;25(3):559–561. doi: 10.1016/0022-2836(67)90207-0. [DOI] [PubMed] [Google Scholar]
  43. Braun V., Hantke K. Biochemistry of bacterial cell envelopes. Annu Rev Biochem. 1974;43(0):89–121. doi: 10.1146/annurev.bi.43.070174.000513. [DOI] [PubMed] [Google Scholar]
  44. Brockman W. W., Nathans D. The isolation of simian virus 40 variants with specifically altered genomes. Proc Natl Acad Sci U S A. 1974 Mar;71(3):942–946. doi: 10.1073/pnas.71.3.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Brody E. N., Mackal R. P., Evans E. A., Jr Properties of infectious T1 deoxyribonucleic acid. J Virol. 1967 Feb;1(1):76–85. doi: 10.1128/jvi.1.1.76-85.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Bron S., Murray K. Restriction and modification in B. subtilis. Nucleotide sequence recognised by restriction endonuclease R. Bsu R from strain R. Mol Gen Genet. 1975 Dec 30;143(1):25–33. doi: 10.1007/BF00269417. [DOI] [PubMed] [Google Scholar]
  47. Bron S., Murray K., Trautner T. A. Restriction and modification in B. subtilis. Purification and general properties of a restriction endonuclease from strain R. Mol Gen Genet. 1975 Dec 30;143(1):13–23. doi: 10.1007/BF00269416. [DOI] [PubMed] [Google Scholar]
  48. Brown D. D., Gurdon J. B. High-fidelity transcription of 5S DNA injected into Xenopus oocytes. Proc Natl Acad Sci U S A. 1977 May;74(5):2064–2068. doi: 10.1073/pnas.74.5.2064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Burch J. W., McBride O. W. Human gene expression in rodent cells after uptake of isolated metaphase chromosomes. Proc Natl Acad Sci U S A. 1975 May;72(5):1797–1801. doi: 10.1073/pnas.72.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Bursztyn H., Sgaramella V., Ciferri O., Lederberg J. Transfectability of rough strains of Salmonella typhimurium. J Bacteriol. 1975 Dec;124(3):1630–1634. doi: 10.1128/jb.124.3.1630-1634.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Burton A., Sinsheimer R. L. The process of infection with bacteriophage phi-X174 VII. Ultracentrifugal analysis of the replicative form. J Mol Biol. 1965 Dec;14(2):327–347. doi: 10.1016/s0022-2836(65)80185-1. [DOI] [PubMed] [Google Scholar]
  52. Chen C. Y., Hutchison C. A., 3rd, Edgell M. H. Isolation and genetic localization of three phi-X174 promoter regions. Nat New Biol. 1973 Jun 20;243(129):233–236. doi: 10.1038/newbio243233a0. [DOI] [PubMed] [Google Scholar]
  53. Chen K. C., Ravin A. W. Mechanism of the deoxyribonucleic acid helping effect during transformation. J Mol Biol. 1968 May 14;33(3):873–891. doi: 10.1016/0022-2836(68)90325-2. [DOI] [PubMed] [Google Scholar]
  54. Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
  55. Clark A. J. Toward a metabolic interpretation of genetic recombination of E. coli and its phages. Annu Rev Microbiol. 1971;25:437–464. doi: 10.1146/annurev.mi.25.100171.002253. [DOI] [PubMed] [Google Scholar]
  56. Cohen G., Zimmer Z. Transfection of Escherichia coli by bacteriophage P1 DNA. Mol Gen Genet. 1974;128(2):183–186. doi: 10.1007/BF02654490. [DOI] [PubMed] [Google Scholar]
  57. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Cooper G. M., Temin H. M. Infectious rous sarcoma virus and reticuloendotheliosis virus DNAs. J Virol. 1974 Nov;14(5):1132–1141. doi: 10.1128/jvi.14.5.1132-1141.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Cooper P. Excision-repair in mutants of Escherichia coli deficient in DNA polymerase I and/or its associated 5' leads to 3' exonuclease. Mol Gen Genet. 1977 Jan 7;150(1):1–12. doi: 10.1007/BF02425319. [DOI] [PubMed] [Google Scholar]
  60. Cosloy S. D., Oishi M. Genetic transformation in Escherichia coli K12. Proc Natl Acad Sci U S A. 1973 Jan;70(1):84–87. doi: 10.1073/pnas.70.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Cosloy S. D., Oishi M. The nature of the transformation process in Escherichia coli K12. Mol Gen Genet. 1973 Jul 31;124(1):1–10. doi: 10.1007/BF00267159. [DOI] [PubMed] [Google Scholar]
  62. DUSSOIX D., ARBER W. HOST SPECIFICITY OF DNA PRODUCED BY ESCHERICHIA COLI. IV. HOST SPECIFICITY OF INFECTIOUS DNA FROM BACTERIOPHAGE LAMBDA. J Mol Biol. 1965 Feb;11:238–246. doi: 10.1016/s0022-2836(65)80054-7. [DOI] [PubMed] [Google Scholar]
  63. David G. S. Solid state lactoperoxidase: a highly stable enzyme for simple, gentle iodination of proteins. Biochem Biophys Res Commun. 1972 Jul 25;48(2):464–471. doi: 10.1016/s0006-291x(72)80074-3. [DOI] [PubMed] [Google Scholar]
  64. Davidoff-Abelson R., Dubnau D. Conditions affecting the isolation from transformed cells of Bacillus subtilis of high-molecular-weight single-stranded deoxyribonucleic acid of donor origin. J Bacteriol. 1973 Oct;116(1):146–153. doi: 10.1128/jb.116.1.146-153.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Dawes J., Goldberg E. B. Functions of baseplate components in bacteriophage T4 infection. I. Dihydrofolate reductase and dihydropteroylhexaglutamate. Virology. 1973 Oct;55(2):380–390. doi: 10.1016/0042-6822(73)90178-5. [DOI] [PubMed] [Google Scholar]
  66. Dawes J., Goldberg E. B. Functions of baseplate components in bacteriophage T4 infection. II. Products of genes 5, 6, 7, 8, and 10. Virology. 1973 Oct;55(2):391–396. doi: 10.1016/0042-6822(73)90179-7. [DOI] [PubMed] [Google Scholar]
  67. Denhardt D. T., Sinsheimer R. L. The process of infection with bacteriophage phi-X174. IV. Replication of the viral DNA in a synchronized infection. J Mol Biol. 1965 Jul;12(3):647–662. doi: 10.1016/s0022-2836(65)80319-9. [DOI] [PubMed] [Google Scholar]
  68. Dityatkin S. Y., Lisovskaya K. V., Panzhava N. N., Iliashenko B. N. Frozen-thawed bacteria as recipients of isolated coliphage DNA. Biochim Biophys Acta. 1972 Oct 27;281(3):319–323. doi: 10.1016/0005-2787(72)90444-3. [DOI] [PubMed] [Google Scholar]
  69. Dodgson J. B., Nes I. F., Porter B. W., Wells R. D. Two new genetic assays for noninfectious fragments of phiX174 DNA. Virology. 1976 Feb;69(2):782–785. doi: 10.1016/0042-6822(76)90506-7. [DOI] [PubMed] [Google Scholar]
  70. Doerfler W., Hogness D. S. Gene orientation in bacteriophage lambda as determined from the genetic activities of heteroduplex DNA formed in vitro. J Mol Biol. 1968 May 14;33(3):661–678. doi: 10.1016/0022-2836(68)90312-4. [DOI] [PubMed] [Google Scholar]
  71. Domingo E., Flavell R. A., Weissmann C. In vitro site-directed mutagenesis: generation and properties of an infectious extracistronic mutant of bacteriophage Qbeta. Gene. 1976;1(1):3–25. doi: 10.1016/0378-1119(76)90003-2. [DOI] [PubMed] [Google Scholar]
  72. Doniger J., Warner R. C., Tessma I. Role of circular dimer DNA in the primary recombination mechanism of bacteriophage S13. Nat New Biol. 1973 Mar 7;242(114):9–12. doi: 10.1038/newbio242009a0. [DOI] [PubMed] [Google Scholar]
  73. Dove W. F., Weigle J. J. Intracellular state of the chromosome of bacteriophage lambda. I. The eclipse of infectivity of the bacteriophage DNA. J Mol Biol. 1965 Jul;12(3):620–629. doi: 10.1016/s0022-2836(65)80316-3. [DOI] [PubMed] [Google Scholar]
  74. Dowell C. E., Sinsheimer R. L. The process of infection with bacteriophage phi-X174. IX. Studies on the physiology of three phi-X174 temperature-sensitive mutants. J Mol Biol. 1966 Apr;16(2):374–386. doi: 10.1016/s0022-2836(66)80180-8. [DOI] [PubMed] [Google Scholar]
  75. Dubes G. R. Methods for transfecting cells with nucleic acids of animal viruses: a review. Experientia Suppl. 1971;16:3–82. doi: 10.1007/978-3-0348-5773-4. [DOI] [PubMed] [Google Scholar]
  76. ENGELHARDT D. L., ZINDER N. D. HOST-DEPENDENT MUTANTS OF THE BACTERIOPHAGE F2. 3. INFECTIVE RNA. Virology. 1964 Aug;23:582–587. doi: 10.1016/0042-6822(64)90242-9. [DOI] [PubMed] [Google Scholar]
  77. Edgell M. H., Hutchison C. A., 3rd, Sclair M. Specific endonuclease R fragments of bacteriophage phiX174 deoxyribonucleic acid. J Virol. 1972 Apr;9(4):574–582. doi: 10.1128/jvi.9.4.574-582.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Egan J. B., Hogness D. S. The topography of lambda DNA: isolation of ordered fragments and the physical mapping of point mutations. J Mol Biol. 1972 Nov 14;71(2):363–381. doi: 10.1016/0022-2836(72)90357-9. [DOI] [PubMed] [Google Scholar]
  79. Eisenberg S., Griffith J., Kornberg A. phiX174 cistron A protein is a multifunctional enzyme in DNA replication. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3198–3202. doi: 10.1073/pnas.74.8.3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Eisenstadt E., Lange R., Willecke K. Competent Bacillus subtilis cultures synthesize a denatured DNA binding activity. Proc Natl Acad Sci U S A. 1975 Jan;72(1):323–327. doi: 10.1073/pnas.72.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Elseth G. D., Simmons J. R. Initiation of infection by deoxyribonucleic acid from . . . bacteriophage lambda. J Bacteriol. 1967 Feb;93(2):663–669. doi: 10.1128/jb.93.2.663-669.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Epstein H. T. Factors affecting bacterial competence for transfection and transfection enhancement. Bacteriol Rev. 1968 Dec;32(4 Pt 1):313–319. [PMC free article] [PubMed] [Google Scholar]
  83. Epstein H. T., Mahler I. Mechanisms of enhancement of SP82 transfection. J Virol. 1968 Jul;2(7):710–715. doi: 10.1128/jvi.2.7.710-715.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Epstein H. T., Silver L. An estimate of the action spectrum for ultraviolet enhancement of transfection. Virology. 1968 Feb;34(2):382–385. doi: 10.1016/0042-6822(68)90256-0. [DOI] [PubMed] [Google Scholar]
  85. Epstein H. T. Source of the nonlinear dependence of bacteriophage SP82 transfection on deoxyribonucleic acid concentration. J Virol. 1971 Jun;7(6):749–752. doi: 10.1128/jvi.7.6.749-752.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Epstein H. T. Transfection enhancement by ultraviolet irradiation. Biochem Biophys Res Commun. 1967 Apr 20;27(2):258–262. doi: 10.1016/s0006-291x(67)80071-8. [DOI] [PubMed] [Google Scholar]
  87. Erikson R. L., Erikson E., Gordon J. A. Structure and function of bacteriophage R17 replicative intermediate RNA. I. Studies on sedimentation and infectivity. J Mol Biol. 1966 Dec 28;22(2):257–268. doi: 10.1016/0022-2836(66)90131-8. [DOI] [PubMed] [Google Scholar]
  88. Erikson R. L., Franklin R. M. Symposium on replication of viral nucleic acids. I. Formation and properties of a replicative intermediate in the biosynthesis of viral ribonucleic acid. Bacteriol Rev. 1966 Jun;30(2):267–278. doi: 10.1128/br.30.2.267-278.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Eskin B., Lautenberger J. A., Linn S. Host-controlled modification and restriction of bacteriophage T7 by escherichia coli B. J Virol. 1973 Jun;11(6):1020–1023. doi: 10.1128/jvi.11.6.1020-1023.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Eskin B., Linn S. The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. II. Purification, subunit structure, and catalytic properties of the restriction endonuclease. J Biol Chem. 1972 Oct 10;247(19):6183–6191. [PubMed] [Google Scholar]
  91. Eskridge R. W., Weinfeld H., Paigen K. Susceptibility of different coliphage genomes to host-controlled variation. J Bacteriol. 1967 Mar;93(3):835–844. doi: 10.1128/jb.93.3.835-844.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. FIERS W., SINSHEIMER R. L. The structure of the DNA of bacteriophage phi-X174. I. The action of exopolynucleotidases. J Mol Biol. 1962 Oct;5:408–419. doi: 10.1016/s0022-2836(62)80029-1. [DOI] [PubMed] [Google Scholar]
  93. FIERS W., SINSHEIMER R. L. The structure of the DNA of bacteriophage phi-X174. II. Thermal inactivation. J Mol Biol. 1962 Oct;5:420–423. doi: 10.1016/s0022-2836(62)80030-8. [DOI] [PubMed] [Google Scholar]
  94. FIERS W., SINSHEIMER R. L. The structure of the DNA of bacteriophage phi-X174. III. Ultracentrifugal evidence for a ring structure. J Mol Biol. 1962 Oct;5:424–434. doi: 10.1016/s0022-2836(62)80031-x. [DOI] [PubMed] [Google Scholar]
  95. FOELDES J., TRAUTNER T. A. INFECTIOUS DNA FROM A NEWLY ISOLATED B. SUBTILIS PHAGE. Z Vererbungsl. 1964 Apr 10;95:57–65. doi: 10.1007/BF00898184. [DOI] [PubMed] [Google Scholar]
  96. FOUACE J., HUPPERT J. [Infection of bacterial spheroplasts by phage ribonucleic acid. Method of isolation and identification of phages by their nucleic acids]. C R Hebd Seances Acad Sci. 1962 Jun 18;254:4387–4389. [PubMed] [Google Scholar]
  97. FOX M. S., HOTCHKISS R. D. Initiation of bacterial transformation. Nature. 1957 Jun 29;179(4574):1322–1325. doi: 10.1038/1791322a0. [DOI] [PubMed] [Google Scholar]
  98. FRAENKEL-CONRAT H., SINGER B., TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. doi: 10.1016/0042-6822(61)90131-3. [DOI] [PubMed] [Google Scholar]
  99. Falaschi A., Kornberg A. A lipopolysaccharide inhibitor of a DNA methyl transferase. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1713–1720. doi: 10.1073/pnas.54.6.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Feix G., Pollet R., Weissmann C. Replication of viral RNA, XVI. Enzymatic synthesis of infectious virual RNA with noninfectious Q-beta minus strands as template. Proc Natl Acad Sci U S A. 1968 Jan;59(1):145–152. doi: 10.1073/pnas.59.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Feix G., Slor H., Weissmann C. Replication of viral RNA. 13. The early product of phage RNA synthesis in vitro. Proc Natl Acad Sci U S A. 1967 May;57(5):1401–1408. doi: 10.1073/pnas.57.5.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Fiedler F., Mauck J., Glaser L. Problems in cell wall assembly. Ann N Y Acad Sci. 1974 May 10;235(0):198–209. doi: 10.1111/j.1749-6632.1974.tb43266.x. [DOI] [PubMed] [Google Scholar]
  103. Fischbach K. F., Spatz H. C., Klotz G. A quantitative theory of transfection in B. subtilis. Mol Gen Genet. 1975 Nov 24;141(2):121–145. doi: 10.1007/BF00267679. [DOI] [PubMed] [Google Scholar]
  104. Flavell R. A., Sabo D. L., Bandle E. F., Weissmann C. Site-directed mutagenesis: effect of an extracistronic mutation on the in vitro propagation of bacteriophage Qbeta RNA. Proc Natl Acad Sci U S A. 1975 Jan;72(1):367–371. doi: 10.1073/pnas.72.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Flavell R. A., Sabo D. L., Bandle E. F., Weissmann C. Site-directed mutagenesis: generation of an extracistronic mutation in bacteriophage Q beta RNA. J Mol Biol. 1974 Oct 25;89(2):255–272. doi: 10.1016/0022-2836(74)90517-8. [DOI] [PubMed] [Google Scholar]
  106. Flock J. I., Rutberg L. Mature DNA from temperate bacillusphage phi105 requires primary recombination to be infectious in transfection. Mol Gen Genet. 1974;131(4):301–311. doi: 10.1007/BF00264861. [DOI] [PubMed] [Google Scholar]
  107. Földes J., Domonkos K. Topologic analysis of the fate of transfecting SP50 DNA in competent cells of Bacillus subtilis. Acta Microbiol Acad Sci Hung. 1974;21(3-4):345–358. [PubMed] [Google Scholar]
  108. GIERER A. Die Grösse der biologisch aktiven Einheit der Ribosenucleinsäure des Tabakmosaikvirus. Z Naturforsch B. 1958 Aug;13B(8):485–488. [PubMed] [Google Scholar]
  109. GREEN D. M. INFECTIVITY OF DNA ISOLATED FROM BACILLUS SUBTILIS BACTERIOPHAGE, SP82. J Mol Biol. 1964 Dec;10:438–451. doi: 10.1016/s0022-2836(64)80065-6. [DOI] [PubMed] [Google Scholar]
  110. GUTHRIE G. D., SINSHEIMER R. L. Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage phi X174. Biochim Biophys Acta. 1963 Jun 25;72:290–297. [PubMed] [Google Scholar]
  111. Garro A. J. DNA-mediated prophage induction in Bacillus subtilis lysogenic for phi 105c4. J Virol. 1973 Jul;12(1):18–24. doi: 10.1128/jvi.12.1.18-24.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Garro A. J. Isolation and properties of Bacillus subtilis strains lysogenized by a clear plaque mutant of bacteriophage phi 105. J Virol. 1973 Jul;12(1):13–17. doi: 10.1128/jvi.12.1.13-17.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Garro A. J., Law M. F. Relationship between lysogeny, spontaneous induction, and transformation efficiencies in Bacillus subtilis. J Bacteriol. 1974 Dec;120(3):1256–1259. doi: 10.1128/jb.120.3.1256-1259.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Geider K., Kornberg A. Conversion of the M13 viral single strand to the double-stranded replicative forms by purified proteins. J Biol Chem. 1974 Jul 10;249(13):3999–4005. [PubMed] [Google Scholar]
  115. Gillin F. D., Bode V. C. Micrococcal nuclease treatment of bacteriophage heads alters the right-hand cohesive end of lambda deoxyribonucleic Acid. J Virol. 1972 Oct;10(4):863–865. doi: 10.1128/jvi.10.4.863-865.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Gillin F. D., Bode V. C. The arrangement of DNA in lambda phage heads. II. lambda DNA after exposure to micrococcal nuclease at the site of head-tail joining. J Mol Biol. 1971 Dec 28;62(3):503–511. doi: 10.1016/0022-2836(71)90151-3. [DOI] [PubMed] [Google Scholar]
  117. Goldberg E. B. The amount of DNA between genetic markers in phage T4. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1457–1463. doi: 10.1073/pnas.56.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Goldmark P. J., Linn S. An endonuclease activity from Escherichia coli absent from certain rec- strains. Proc Natl Acad Sci U S A. 1970 Sep;67(1):434–441. doi: 10.1073/pnas.67.1.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Gottesman S., Gottesman M. E. Elements involved in site-specific recombination in bacteriophage lambda. J Mol Biol. 1975 Feb 5;91(4):489–499. doi: 10.1016/0022-2836(75)90275-2. [DOI] [PubMed] [Google Scholar]
  120. Gottesman S., Gottesman M. Excision of prophage lambda in a cell-free system. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2188–2192. doi: 10.1073/pnas.72.6.2188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Goulian M., Kornberg A., Sinsheimer R. L. Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage phi-X174 DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2321–2328. doi: 10.1073/pnas.58.6.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Graham F. L., Abrahams P. J., Mulder C., Heijneker H. L., Warnaar S. O., De Vries F. A., Fiers W., Van Der Eb A. J. Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and simian virus 40. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):637–650. doi: 10.1101/sqb.1974.039.01.077. [DOI] [PubMed] [Google Scholar]
  123. Graham F. L., Veldhuisen G., Wilkie N. M. Infectious herpesvirus DNA. Nat New Biol. 1973 Oct 31;245(148):265–266. doi: 10.1038/newbio245265a0. [DOI] [PubMed] [Google Scholar]
  124. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  125. Graham F. L., van der Eb A. J., Heijneker H. L. Size and location of the transforming region in human adenovirus type 5 DNA. Nature. 1974 Oct 25;251(5477):687–691. doi: 10.1038/251687a0. [DOI] [PubMed] [Google Scholar]
  126. Green D. M. Gene dislinkage in transfection of SP82G phage DNA. Genetics. 1968 Dec;60(4):673–680. doi: 10.1093/genetics/60.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Green D. M., Urban M. I. Recombination and transfection mapping of cistron 5 of bacteriophage sp82g. Genetics. 1972 Feb;70(2):187–203. doi: 10.1093/genetics/70.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Gurdon J. B. Molecular biology in a living cell. Nature. 1974 Apr 26;248(5451):772–776. doi: 10.1038/248772a0. [DOI] [PubMed] [Google Scholar]
  129. HARM W., RUPERT C. S. INFECTION OF TRANSFORMABLE CELLS OF HAEMOPHILUS INFLUENZAE BY BACTERIOPHAGE AND BACTERIOPHAGE DNA. Z Vererbungsl. 1963 Dec 30;94:336–348. doi: 10.1007/BF00897593. [DOI] [PubMed] [Google Scholar]
  130. HAYASHI M., HAYASHI M. N., SPIEGELMANS Replicating form of a single-stranded DNA virus: isolation and properties. Science. 1963 Jun 21;140(3573):1313–1316. doi: 10.1126/science.140.3573.1313. [DOI] [PubMed] [Google Scholar]
  131. HOFFMANN-BERLING H., DUERWALD H., BEULKE I. EIN FAEDIGER DNS-PHAGE (FD) UND EIN SPHAERISCHER RNS-PHAGE (FR) WIRTSSPEZIFISCH FUER MAENNLICHE STAEMME VON E. COLI. III. BIOLOGISCHES VERHALTEN VON FD UND FR. Z Naturforsch B. 1963 Nov;18:893–898. [PubMed] [Google Scholar]
  132. HUPPERT J., WAHL R., EMERIQUE-BLUM L. [Conditions of the infection of bacteriophage phi-X 174 with deoxyribonucleic acid]. Biochim Biophys Acta. 1962 Jan 22;55:182–201. doi: 10.1016/0006-3002(62)90944-7. [DOI] [PubMed] [Google Scholar]
  133. Hadden C., Nester E. W. Purification of competent cells in the Bacillus subtilis transformation system. J Bacteriol. 1968 Mar;95(3):876–885. doi: 10.1128/jb.95.3.876-885.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Havender W. R., Trautner T. A. Genetic and transfection studies with B. subtilis phage SP50. 3. Biological effects of DNA cleavage and the physical basis of the map. Mol Gen Genet. 1972;116(1):51–67. doi: 10.1007/BF00334260. [DOI] [PubMed] [Google Scholar]
  135. Hayashi M. N., Hayashi M. Fragment maps of phiX-174 replicative DNA produced by restriction enzymes from haemophilus aphirophilus and haemophilus influenzae H-I. J Virol. 1974 Nov;14(5):1142–1151. doi: 10.1128/jvi.14.5.1142-1151.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Hayward G. S. Gel electrophoretic separation of the complementary strands of bacteriophage DNA. Virology. 1972 Jul;49(1):342–344. doi: 10.1016/s0042-6822(72)80042-4. [DOI] [PubMed] [Google Scholar]
  137. Henner W. D., Kleber I., Benzinger R. Transfection of Escherichia coli spheroplasts. 3. Facilitation of transfection and stabilization of spheroplasts by different basic polymers. J Virol. 1973 Oct;12(4):741–747. doi: 10.1128/jvi.12.4.741-747.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Higa A., Mandel M. Factors influencing competence of Escherichia coli for lambda-phage deoxyribonucleic acid infection. Jpn J Microbiol. 1972 Jul;16(4):251–257. doi: 10.1111/j.1348-0421.1972.tb00657.x. [DOI] [PubMed] [Google Scholar]
  139. Hill M., Hillova J. Virus recovery in chicken cells tested with Rous sarcoma cell DNA. Nat New Biol. 1972 May 10;237(71):35–39. doi: 10.1038/newbio237035a0. [DOI] [PubMed] [Google Scholar]
  140. Hirokawa H. Transfecting deoxyribonucleic acid of Bacillus bacteriophage phi 29 that is protease sensitive. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1555–1559. doi: 10.1073/pnas.69.6.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Hogness D. S. The structure and function of the DNA from bacteriophage lambda. J Gen Physiol. 1966 Jul;49(6):29–57. doi: 10.1085/jgp.49.6.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Holloman W. K., Wiegand R., Hoessli C., Radding C. M. Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2394–2398. doi: 10.1073/pnas.72.6.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Horváth S. Differences between phage infection and transfection in Bacillus subtilis. Arch Gesamte Virusforsch. 1969;28(3):325–336. doi: 10.1007/BF01240947. [DOI] [PubMed] [Google Scholar]
  144. Hotz G., Mauser R. Infectious DNA from coliphage T1. I. Some properties of the spheroplast assay system. Mol Gen Genet. 1969;104(2):178–194. doi: 10.1007/BF00272800. [DOI] [PubMed] [Google Scholar]
  145. Hua S., Mackal R. P., Werninghaus B., Evans E. A., Jr Infectious DNA preparations from T2 and T4 bacteriophages. Virology. 1971 Nov;46(2):192–199. doi: 10.1016/0042-6822(71)90022-5. [DOI] [PubMed] [Google Scholar]
  146. Hurwitz J., Wickner S. Involvement of two protein factors and ATP in in vitro DNA synthesis catalyzed by DNA polymerase 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Jan;71(1):6–10. doi: 10.1073/pnas.71.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Hutchison C. A., 3rd, Edgell M. H. Genetic assay for small fragments of bacteriophage phi X174 deoxyribonucleic acid. J Virol. 1971 Aug;8(2):181–189. doi: 10.1128/jvi.8.2.181-189.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. JANSZ H. S., POUWELS P. H. STRUCTURE OF THE REPLICATIVE FORM OF BACTERIOPHAGE 0X174. Biochem Biophys Res Commun. 1965 Feb 17;18:589–594. doi: 10.1016/0006-291x(65)90795-3. [DOI] [PubMed] [Google Scholar]
  149. JANSZ H. S., POUWELS P. H., VAN ROTTERDAM SENSITIVITY TO ULTRAVIOLET LIGHT OF SINGLE- AND DOUBLE-STRANDED DNA. Biochim Biophys Acta. 1963 Dec 20;76:655–657. [PubMed] [Google Scholar]
  150. Jayaraman R., Goldberg E. B. A genetic assay for mRNA's of phage T4. Proc Natl Acad Sci U S A. 1969 Sep;64(1):198–204. doi: 10.1073/pnas.64.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Jazwinski S. M., Lindberg A. A., Kornberg A. The gene H spike protein of bacteriophages phiX174 and S13. I. Functions in phage-receptor recognition and in transfection. Virology. 1975 Jul;66(1):283–293. doi: 10.1016/0042-6822(75)90198-1. [DOI] [PubMed] [Google Scholar]
  152. Jazwinski S. M., Lindberg A. A., Kornberg A. The lipopolysaccharide receptor for bacteriophage phiX174 and S13. Virology. 1975 Jul;66(1):268–282. doi: 10.1016/0042-6822(75)90197-x. [DOI] [PubMed] [Google Scholar]
  153. Jazwinski S. M., Marco R., Kornberg A. A coat protein of the bacteriophage M13 virion participates in membrane-oriented synthesis of DNA. Proc Natl Acad Sci U S A. 1973 Jan;70(1):205–209. doi: 10.1073/pnas.70.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Jazwinski S. M., Marco R., Kornberg A. The gene H spike protein of bacteriophages phiX174 and S13. II. Relation to synthesis of the parenteral replicative form. Virology. 1975 Jul;66(1):294–305. doi: 10.1016/0042-6822(75)90199-3. [DOI] [PubMed] [Google Scholar]
  155. Joenje H., Venema G. Different nuclease activities in competent and noncompetent Bacillus subtilis. J Bacteriol. 1975 Apr;122(1):25–33. doi: 10.1128/jb.122.1.25-33.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  157. KAISER A. D. The production of phage chromosome fragments and their capacity for genetic transfer. J Mol Biol. 1962 Apr;4:275–287. doi: 10.1016/s0022-2836(62)80005-9. [DOI] [PubMed] [Google Scholar]
  158. KNOLLE P., KAUDEWITZ F. Factors affecting the plaqueyield resulting from infection of E-coli K12 protoplasts by phenol extracts of the RNA-phage ft5. Biochem Biophys Res Commun. 1962 Oct 17;9:208–212. doi: 10.1016/0006-291x(62)90059-1. [DOI] [PubMed] [Google Scholar]
  159. Kahmann R., Kamp D., Zipser D. Transfection of Escherichia coli by Mu DNA. Mol Gen Genet. 1976 Dec 22;149(3):323–328. doi: 10.1007/BF00268534. [DOI] [PubMed] [Google Scholar]
  160. Kaiser A. D., Inman R. B. Cohesion and the biological activity of bacteriophage lambda DNA. J Mol Biol. 1965 Aug;13(1):78–91. doi: 10.1016/s0022-2836(65)80081-x. [DOI] [PubMed] [Google Scholar]
  161. Kamen R. Infectivity of bacteriophage R17 RNA after sequential removal of 3' terminal nucleotides. Nature. 1969 Jan 25;221(5178):321–325. doi: 10.1038/221321a0. [DOI] [PubMed] [Google Scholar]
  162. Kiger J. A., Jr, Young E. T., 2nd, Sinsheimer R. L. Infectivity of single-stranded rings of bacteriophage lambda DNA. J Mol Biol. 1967 Aug 28;28(1):157–160. doi: 10.1016/s0022-2836(67)80084-6. [DOI] [PubMed] [Google Scholar]
  163. Kiger J. A., Jr, Young E. T., 2nd, Sinsheimer R. L. Purification and properties of intracellular lamba DNA rings. J Mol Biol. 1968 Apr 28;33(2):395–413. doi: 10.1016/0022-2836(68)90197-6. [DOI] [PubMed] [Google Scholar]
  164. Knippers R., Hoffmann-Berling H. A coat protein from bacteriophage fd. 3. Specificity of protein-DNA association in vivo. J Mol Biol. 1966 Nov 14;21(2):305–312. doi: 10.1016/0022-2836(66)90101-x. [DOI] [PubMed] [Google Scholar]
  165. Knox K. W., Wicken A. J. Immunological properties of teichoic acids. Bacteriol Rev. 1973 Jun;37(2):215–257. doi: 10.1128/br.37.2.215-257.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Kohn K. W., Green D. M. Transforming activity of nitrogen mustard-crosslinked DNA. J Mol Biol. 1966 Aug;19(2):289–302. doi: 10.1016/s0022-2836(66)80005-0. [DOI] [PubMed] [Google Scholar]
  167. Kohno T., Roth J. R. Proflavin mutagenesis of bacteria. J Mol Biol. 1974 Oct 15;89(1):17–32. doi: 10.1016/0022-2836(74)90160-0. [DOI] [PubMed] [Google Scholar]
  168. Kondorosi A., Orosz L., Sváb Z., Sik T. Genetic studies on rhizobiophage 16-3. II. Helper-induced transfection. Mol Gen Genet. 1974;132(2):153–163. doi: 10.1007/BF00272181. [DOI] [PubMed] [Google Scholar]
  169. Kramer F. R., Mills D. R., Cole P. E., Nishihara T., Spiegelman S. Evolution in vitro: sequence and phenotype of a mutant RNA resistant to ethidium bromide. J Mol Biol. 1974 Nov 15;89(4):719–736. doi: 10.1016/0022-2836(74)90047-3. [DOI] [PubMed] [Google Scholar]
  170. Kühnlein U., Arber W. Host specificity of DNA produced by Escherichia coli. XV. The role of nucleotide methylation in in vitro B-specific modification. J Mol Biol. 1972 Jan 14;63(1):9–19. doi: 10.1016/0022-2836(72)90518-9. [DOI] [PubMed] [Google Scholar]
  171. Kühnlein U., Linn S., Arber W. Host specificity of DNA produced by Escherichia coli. XI. In vitro modification of phage fd replicative form. Proc Natl Acad Sci U S A. 1969 Jun;63(2):556–562. doi: 10.1073/pnas.63.2.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Lacks S. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol. 1970 Feb;101(2):373–383. doi: 10.1128/jb.101.2.373-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Laskey R. A., Gurdon J. B. Induction of polyoma DNA synthesis by injection into frog-egg cytoplasm. Eur J Biochem. 1973 Sep 3;37(3):467–471. doi: 10.1111/j.1432-1033.1973.tb03007.x. [DOI] [PubMed] [Google Scholar]
  174. Lautenberger J. A., Linn S. The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase. J Biol Chem. 1972 Oct 10;247(19):6176–6182. [PubMed] [Google Scholar]
  175. Lawhorne L., Kleber I., Mitchell C., Benzinger R. Transfection of Escherichia coli spheroplasts. II. Relative infectivity of native, denatured, and renatured lambda, T7, T5, T4, and P22 bacteriophage DNAs. J Virol. 1973 Oct;12(4):733–740. doi: 10.1128/jvi.12.4.733-740.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Leder P., Tiemeier D., Enquist L. EK2 derivatives of bacteriophage lambda useful in the cloning of DNA from higher organisms: the lambdagtWES system. Science. 1977 Apr 8;196(4286):175–177. doi: 10.1126/science.322278. [DOI] [PubMed] [Google Scholar]
  177. Leipold B., Hofschneider P. H. Isolation of an infectious RNA-A-protein complex from the bacteriophage M12. FEBS Lett. 1975 Jul 15;55(1):50–52. doi: 10.1016/0014-5793(75)80954-9. [DOI] [PubMed] [Google Scholar]
  178. Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x. [DOI] [PubMed] [Google Scholar]
  179. Linn S., Arber W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1300–1306. doi: 10.1073/pnas.59.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Liss A., Maniloff J. Transfection mediated by Mycoplasmatales viral DNA. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3423–3427. doi: 10.1073/pnas.69.11.3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Lyons L. B., Zinder N. D. The genetic map of the filamentous bacteriophage f1. Virology. 1972 Jul;49(1):45–60. doi: 10.1016/s0042-6822(72)80006-0. [DOI] [PubMed] [Google Scholar]
  182. MACKAL R. P., WERNINGHAUS B., EVANS E. A., Jr THE FORMATION OF LAMBDA BACTERIOPHAGE BY LAMBDA DNA IN DISRUPTED CELL PREPARATIONS. Proc Natl Acad Sci U S A. 1964 Jun;51:1172–1178. doi: 10.1073/pnas.51.6.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. MEYER F., MACKAL R. P., TAO M., EVANS E. A., Jr Infectious deoxyribonucleic acid from gamma bacteriophage. J Biol Chem. 1961 Apr;236:1141–1143. [PubMed] [Google Scholar]
  184. MUNDRY K. W., GIERER A. Die Erzeugung von Mutationen des Tabakmosaikvirus durch chemische Behandlung seiner Nucleinsäure in vitro. Z Vererbungsl. 1958;89(4):614–630. [PubMed] [Google Scholar]
  185. Mackal R. P., Werninghaus B., Evans E. A., Jr Origin of DNA and protein in lambda DNA infected disrupted cell preparations. Biochem Biophys Res Commun. 1971 Jan 8;42(1):89–96. doi: 10.1016/0006-291x(71)90366-4. [DOI] [PubMed] [Google Scholar]
  186. Mackinlay A. G., Kaiser A. D. DNA replication in head mutants of bacteriophage lambda. J Mol Biol. 1969 Feb 14;39(3):679–683. doi: 10.1016/0022-2836(69)90155-7. [DOI] [PubMed] [Google Scholar]
  187. Mahler I., George J., Grossman L. In vitro repair of UV-irradiated Micrococcus luteus bacteriophage N1 transfecting DNA. J Virol. 1974 Mar;13(3):765–767. doi: 10.1128/jvi.13.3.765-767.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Mandel M., Berg A. Cohesive sites and helper phage function of P2, lambda, and 186 DNA's. Proc Natl Acad Sci U S A. 1968 May;60(1):265–268. doi: 10.1073/pnas.60.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  190. Mandel M. Infectivity of phage P2 DNA in presence of helper phage. Mol Gen Genet. 1967;99(1):88–96. doi: 10.1007/BF00306461. [DOI] [PubMed] [Google Scholar]
  191. Mantel N., Boyer H. W., Goodman H. M. Mapping simian virus 40 mutants by construction of partial heterozygotes. J Virol. 1975 Sep;16(3):754–757. doi: 10.1128/jvi.16.3.754-757.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Marco R., Jazwinski S. M., Kornberg A. Binding, eclipse, and penetration of the filamentous bacteriophage M13 in intact and disrupted cells. Virology. 1974 Nov;62(1):209–223. doi: 10.1016/0042-6822(74)90316-x. [DOI] [PubMed] [Google Scholar]
  193. Martin H. H., Lehmann R., Herzog U., Kaul U. Altered rigid layer composition in cell envelopes of shape-defective forms of Proteus mirabilis and Escherichia coli. Ann N Y Acad Sci. 1974 May 10;235(0):283–293. doi: 10.1111/j.1749-6632.1974.tb43271.x. [DOI] [PubMed] [Google Scholar]
  194. Marvin D. A., Schaller H. The topology of DNA from the small filamentous bacteriophage fd. J Mol Biol. 1966 Jan;15(1):1–7. doi: 10.1016/s0022-2836(66)80204-8. [DOI] [PubMed] [Google Scholar]
  195. Masker W. E., Richardson C. C. Bacteriophage T7 deoxyribonucleic acid replication in vitro VI. Synthesis of biologically active T7 DNA. J Mol Biol. 1976 Feb 5;100(4):557–567. doi: 10.1016/s0022-2836(76)80045-9. [DOI] [PubMed] [Google Scholar]
  196. Masker W. E., Richardson C. C. Bacteriophage T7 deoxyribonucleic acid replication in vitro. V. Synthesis of intact chromosomes of bacteriophage T7. J Mol Biol. 1976 Feb 5;100(4):543–556. doi: 10.1016/s0022-2836(76)80044-7. [DOI] [PubMed] [Google Scholar]
  197. Mazaitis A. J., Bautz E. K. Partial isolation of an rIIB segment of T4 DNA by hybridization with homologous RNA. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1633–1637. doi: 10.1073/pnas.57.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Mazza G., Fortunato A., Ferrari E., Canosi U., Falaschi A., Polsinelli M. Genetic and enzymic studies on the recombination process in Bacillus subtilis. Mol Gen Genet. 1975;136(1):9–30. doi: 10.1007/BF00275445. [DOI] [PubMed] [Google Scholar]
  199. McAllister W. T. Bacteriophage infection: which end of the SP82G genome goes in first? J Virol. 1970 Feb;5(2):194–198. doi: 10.1128/jvi.5.2.194-198.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. McAllister W. T., Green D. M. Bacteriophage SP82G inhibition of an intracellular deoxyribonucleic acid inactivation process in Bacillus subtilis. J Virol. 1972 Jul;10(1):51–59. doi: 10.1128/jvi.10.1.51-59.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. McAllister W. T., Green D. M. Effects of the decay of incorporated radioactive phosphorus on the transfer of the bacteriophage SP82G genome. J Virol. 1973 Aug;12(2):300–309. doi: 10.1128/jvi.12.2.300-309.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. McBride O. W., Ozer H. L. Transfer of genetic information by purified metaphase chromosomes. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1258–1262. doi: 10.1073/pnas.70.4.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Mcdonnell M., Lain R., Tomasz A. "Diplophage": a bacteriophage of Diplococcus pneumoniae. Virology. 1975 Feb;63(2):577–582. doi: 10.1016/0042-6822(75)90329-3. [DOI] [PubMed] [Google Scholar]
  204. Melechen N. E., Hudnik-Plevnik T. A., Pfeifer G. S. Increased stability and reproducibility of Escherichia coli spheroplasts in the transfection assay of phage lambda DNA with polyethylene glycol instead of sucrose. Virology. 1972 Mar;47(3):610–617. doi: 10.1016/0042-6822(72)90550-8. [DOI] [PubMed] [Google Scholar]
  205. Merriam V., Dumas L. B., Sinsheimer R. L. Genetic Expression in Heterozygous Replicative Form Molecules of phiX174. J Virol. 1971 May;7(5):603–611. doi: 10.1128/jvi.7.5.603-611.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Merriam V., Funk F., Sinsheimer R. L. Genetic expression in whole cells of heterozygous replicative-form molecules of phi X174. Mutat Res. 1971 Jun;12(2):206–210. doi: 10.1016/0027-5107(71)90144-8. [DOI] [PubMed] [Google Scholar]
  207. Mertz J. E., Gurdon J. B. Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1502–1506. doi: 10.1073/pnas.74.4.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Middleton J. H., Edgell M. H., Hutchison C. A., 3rd Specific fragments of phi X174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus aegyptius, endonuclease Z. J Virol. 1972 Jul;10(1):42–50. doi: 10.1128/jvi.10.1.42-50.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Milani V. J., Heberlein G. T. Transfection in Agrobacterium tumefaciens. J Virol. 1972 Jul;10(1):17–22. doi: 10.1128/jvi.10.1.17-22.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Miller I. L., Palmer C. D., Landman O. E. Comparison of deoxyribonucleic acid uptake and marker integration in bacilli and protoplasts of Bacillus subtilis. J Bacteriol. 1972 May;110(2):661–666. doi: 10.1128/jb.110.2.661-666.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Mills D. R., Kramer F. R., Spiegelman S. Complete nucleotide sequence of a replicating RNA molecule. Science. 1973 Jun 1;180(4089):916–927. doi: 10.1126/science.180.4089.916. [DOI] [PubMed] [Google Scholar]
  212. Mills D. R., Pace N. R., Spiegelman S. The in vitro synthesis of a noninfectious complex containing biologically active viral RNA. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1778–1785. doi: 10.1073/pnas.56.6.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Mishra N. C., Niu M. C., Tatum E. L. Induction by RNA of inositol independence in Neurospora crassa. Proc Natl Acad Sci U S A. 1975 Feb;72(2):642–645. doi: 10.1073/pnas.72.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Moses R. E., Richardson C. C. Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc Natl Acad Sci U S A. 1970 Oct;67(2):674–681. doi: 10.1073/pnas.67.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Murray K., Murray N. E. Phage lambda receptor chromosomes for DNA fragments made with restriction endonuclease III of Haemophilus influenzae and restriction endonuclease I of Escherichia coli. J Mol Biol. 1975 Nov 5;98(3):551–564. doi: 10.1016/s0022-2836(75)80086-6. [DOI] [PubMed] [Google Scholar]
  216. Murray N. E., Murray K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments. Nature. 1974 Oct 11;251(5475):476–481. doi: 10.1038/251476a0. [DOI] [PubMed] [Google Scholar]
  217. NEU H. C., HEPPEL L. A. SOME OBSERVATIONS ON THE "LATENT" RIBONUCLEASE OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Jun;51:1267–1274. doi: 10.1073/pnas.51.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. NEU H. C., HEPPEL L. A. THE RELEASE OF RIBONUCLEASE INTO THE MEDIUM WHEN ESCHERICHIA COLI CELLS ARE CONVERTED TO SPEROPLASTS. J Biol Chem. 1964 Nov;239:3893–3900. [PubMed] [Google Scholar]
  219. Nash H. A. Integrative recombination in bacteriophage lambda: analysis of recombinant DNA. J Mol Biol. 1975 Feb 5;91(4):501–514. doi: 10.1016/0022-2836(75)90276-4. [DOI] [PubMed] [Google Scholar]
  220. Nash H. A. Integrative recombination of bacteriophage lambda DNA in vitro. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1072–1076. doi: 10.1073/pnas.72.3.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Neu H. C., Heppel L. A. On the surface localization of enzymes in E. coli. Biochem Biophys Res Commun. 1964 Oct 14;17(3):215–219. doi: 10.1016/0006-291x(64)90386-9. [DOI] [PubMed] [Google Scholar]
  222. Neu H. C., Heppel L. A. The release of ribonuclease into the medium when E. coli cells are converted to spheroplasts. Biochem Biophys Res Commun. 1964;14:109–112. doi: 10.1016/0006-291x(64)90238-4. [DOI] [PubMed] [Google Scholar]
  223. Nevers P., Spatz H. C. Escherichia coli mutants uvr D and uvr E deficient in gene conversion of lambda-heteroduplexes. Mol Gen Genet. 1975 Aug 27;139(3):233–243. doi: 10.1007/BF00268974. [DOI] [PubMed] [Google Scholar]
  224. Newbold J. E., Sinsheimer R. L. The process of infection with bacteriophage phiX174. XXXII. Early steps in the infection process: attachment, eclipse and DNA penetration. J Mol Biol. 1970 Apr 14;49(1):49–66. doi: 10.1016/0022-2836(70)90375-x. [DOI] [PubMed] [Google Scholar]
  225. Nossal N. G., Heppel L. A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem. 1966 Jul 10;241(13):3055–3062. [PubMed] [Google Scholar]
  226. Notani N. K., Setlow J. K., Allison D. P. Intracellular events during infection by Haemophilus influenzae phage and transfection by its DNA. J Mol Biol. 1973 Apr 25;75(4):581–599. doi: 10.1016/0022-2836(73)90293-3. [DOI] [PubMed] [Google Scholar]
  227. Notani N. K., Setlow J. K. Mechanism of bacterial transformation and transfection. Prog Nucleic Acid Res Mol Biol. 1974;14(0):39–100. doi: 10.1016/s0079-6603(08)60205-6. [DOI] [PubMed] [Google Scholar]
  228. OKUBO S., STRAUSS B., STODOLSKY M. THE POSSIBLE ROLE OF RECOMBINATION IN THE INFECTION OF COMPETENT BACILLUS SUBTILIS BY BACTERIOPHAGE DEOXYRIBONUCLEIC ACID. Virology. 1964 Dec;24:552–562. doi: 10.1016/0042-6822(64)90207-7. [DOI] [PubMed] [Google Scholar]
  229. Okanishi M., Hamana K., Umezawa H. Factors affecting infection of protoplasts with deoxyribonucleic acid of actinophage PK-66. J Virol. 1968 Jul;2(7):686–691. doi: 10.1128/jvi.2.7.686-691.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Okanishi M., Utahara R., Okami Y. Infection of the protoplasts of Streptomyces kanamyceticus with deoxyribonucleic acid preparation from actinophage PK-66. J Bacteriol. 1966 Dec;92(6):1850–1852. doi: 10.1128/jb.92.6.1850-1852.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Oki M., Mitsui H. Defective membrane synthesis in an E. coli mutant. Nature. 1974 Nov 1;252(5478):64–66. doi: 10.1038/252064a0. [DOI] [PubMed] [Google Scholar]
  232. Okubo S., Romig W. R. Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA. J Mol Biol. 1965 Nov;14(1):130–142. doi: 10.1016/s0022-2836(65)80235-2. [DOI] [PubMed] [Google Scholar]
  233. Okubo S., Romig W. R. Impaired transformability of Bacillus subtilis mutant sensitive to mitomycin C and ultraviolet radiation. J Mol Biol. 1966 Feb;15(2):440–454. doi: 10.1016/s0022-2836(66)80120-1. [DOI] [PubMed] [Google Scholar]
  234. Oostindier-Braaksma F., Epstein H. T. DNA fixation and development of transformability and transfectability in Bacillus subtilis. Mol Gen Genet. 1970;108(1):23–27. doi: 10.1007/BF00343180. [DOI] [PubMed] [Google Scholar]
  235. Ortin J., Viñuela E., Salas M., Vasquez C. DNA-protein complex in circular DNA from phage phi-29. Nat New Biol. 1971 Dec 29;234(52):275–277. doi: 10.1038/newbio234275a0. [DOI] [PubMed] [Google Scholar]
  236. Osborn M. J., Rick P. D., Lehmann V., Rupprecht E., Singh M. Structure and biogenesis of the cell envelope of gram-negative bacteria. Ann N Y Acad Sci. 1974 May 10;235(0):52–65. doi: 10.1111/j.1749-6632.1974.tb43256.x. [DOI] [PubMed] [Google Scholar]
  237. Osowiecki H., Skalińska B. A. The conditions of transfection of Escherichia coli cells untreated with lysozyme. I. The effect of some factors on the efficiency of transfection with lambda phage DNA. Mol Gen Genet. 1974;133(4):335–343. doi: 10.1007/BF00332709. [DOI] [PubMed] [Google Scholar]
  238. PARANCHYCH W. Assay of infectious RNA from bacteriophage R 17. Biochem Biophys Res Commun. 1963 Apr 2;11:28–33. doi: 10.1016/0006-291x(63)90022-6. [DOI] [PubMed] [Google Scholar]
  239. POUWELS P. H., JANSZ H. S. STRUCTURE OF THE REPLICATIVE FORM OF BACTERIOPHAGE PHIX174. Biochim Biophys Acta. 1964 Sep 11;91:177–179. doi: 10.1016/0926-6550(64)90187-2. [DOI] [PubMed] [Google Scholar]
  240. Pace N. R., Bishop D. H., Spiegelman S. The kinetics of product appearance and template involvement in the in vitro replication of viral RNA. Proc Natl Acad Sci U S A. 1967 Aug;58(2):711–718. doi: 10.1073/pnas.58.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Pace N. R., Spiegelman S. In vitro synthesis of an infectious mutant RNA with a normal RNA replicase. Science. 1966 Jul 1;153(3731):64–67. doi: 10.1126/science.153.3731.64. [DOI] [PubMed] [Google Scholar]
  242. Pace N. R., Spiegelman S. The synthesis of infectious RNA with a replicase purified according to its size and density. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1608–1615. doi: 10.1073/pnas.55.6.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Padmanabhan R., Wu R., Bode V. C. Arrangement of DNA in lambda bacteriophage heads. 3. Location and number of nucleotides cleaved from lambda-DNA by micrococcal nuclease attack on heads. J Mol Biol. 1972 Aug 21;69(2):201–207. doi: 10.1016/0022-2836(72)90225-2. [DOI] [PubMed] [Google Scholar]
  244. Padmanabhan R., Wu R., Calendar R. Complete nucleotide sequence of the cohesive ends of bacteriophage P2 deoxyribonucleic acid. J Biol Chem. 1974 Oct 10;249(19):6197–6207. [PubMed] [Google Scholar]
  245. Pakula R., Spencer L. R., Anderson N., Goldstein P. A. A comparative study of transformable and nontransformable isolates derived from two strains of streptococci. Can J Microbiol. 1973 Feb;19(2):207–216. doi: 10.1139/m73-032. [DOI] [PubMed] [Google Scholar]
  246. Parsons C. L., Cole R. M. Transfection of group H streptococci. J Bacteriol. 1973 Mar;113(3):1505–1506. doi: 10.1128/jb.113.3.1505-1506.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Parsons L. C., Ranhand J. M., Leonard C. G., Colon A. E., Cole R. M. Inhibition of transformation in group H streptococci by lysogeny. J Bacteriol. 1973 Mar;113(3):1217–1222. doi: 10.1128/jb.113.3.1217-1222.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Peterson A. M., Rutberg L. Linked transformation of bacterial and prophage markers in Bacillus subtilis 168 lysogenic for bacteriophage phi 105. J Bacteriol. 1969 Jun;98(3):874–877. doi: 10.1128/jb.98.3.874-877.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Phillips D. R., Morrison M. Exposed protein on the intact human erythrocyte. Biochemistry. 1971 May 11;10(10):1766–1771. doi: 10.1021/bi00786a006. [DOI] [PubMed] [Google Scholar]
  250. Pilarksi L. M., Egan J. B. Role of DNA topology in transcription of coliphage lambda in vivo. II. DNA topology protects the template from exonuclease attack. J Mol Biol. 1973 May 15;76(2):257–266. doi: 10.1016/0022-2836(73)90389-6. [DOI] [PubMed] [Google Scholar]
  251. Poulwels P. H., Jansz H. S., van Rotterdam J., Cohen J. A. Structure of the replicative form of bacteriophage phi-X-174. Physico-chemical studies. Biochim Biophys Acta. 1966 May 19;119(2):289–300. doi: 10.1016/0005-2787(66)90187-0. [DOI] [PubMed] [Google Scholar]
  252. Pouwels P. H., Knijnenburg C. M., van Rotterdam J., Cohen J. A. Structure of the replicative form of bacteriphage phi X174. VI. Studies on alkali-denatured double-stranded phi X DNA. J Mol Biol. 1968 Mar 14;32(2):169–182. doi: 10.1016/0022-2836(68)90002-8. [DOI] [PubMed] [Google Scholar]
  253. Quinn W. G., Sueoka N. Symmetric replication of the Bacillus subtilis chromosome. Proc Natl Acad Sci U S A. 1970 Oct;67(2):717–723. doi: 10.1073/pnas.67.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. RADDING C. M., KAISER A. D. GENE TRANSFER BY BROKEN MOLECULES OF LAMBDA-DNA: ACTIVITY OF THE LEFT HALF-MOLECULE. J Mol Biol. 1963 Sep;7:225–233. doi: 10.1016/s0022-2836(63)80002-9. [DOI] [PubMed] [Google Scholar]
  255. REILLY B. E., SPIZIZEN J. BACTERIOPHAGE DEOXYRIBONUCLEATE INFECTION OF COMPETENT BACILLUS SUBTILIS. J Bacteriol. 1965 Mar;89:782–790. doi: 10.1128/jb.89.3.782-790.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. REPASKE R. Lysis of gram-negative bacteria by lysozyme. Biochim Biophys Acta. 1956 Oct;22(1):189–191. doi: 10.1016/0006-3002(56)90240-2. [DOI] [PubMed] [Google Scholar]
  257. ROERSCH A., VAN DER KAM P. C., ADEMA J. DARK REACTIVATION OF ULTRAVIOLET IRRADIATED BACTERIOPHAGE DEOXYRIBONUCLEIC ACID IN VITRO. Biochim Biophys Acta. 1964 Feb 17;80:346–348. [PubMed] [Google Scholar]
  258. ROMIG W. R. Infection of Bacillus subtilis with phenol-extracted bacteriophages. Virology. 1962 Apr;16:452–459. doi: 10.1016/0042-6822(62)90226-x. [DOI] [PubMed] [Google Scholar]
  259. RYTER A., LANDMAN O. E. ELECTRON MICROSCOPE STUDY OF THE RELATIONSHIP BETWEEN MESOSOME LOSS AND THE STABLE L STATE (OR PROTOPLAST STATE) IN BACILLUS SUBTILIS. J Bacteriol. 1964 Aug;88:457–467. doi: 10.1128/jb.88.2.457-467.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Raetz C. R. Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2274–2278. doi: 10.1073/pnas.72.6.2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Ray D. S., Schekman R. W. Replication of bacteriophage M13. 3. Identification of the intracellular single-straned DNA. J Mol Biol. 1969 Aug 14;43(3):645–647. doi: 10.1016/0022-2836(69)90365-9. [DOI] [PubMed] [Google Scholar]
  262. Rieber M., Millán N. Enhanced DNA uptake and transfection in Escherichia coli cells grown in low-phosphate medium. Biochim Biophys Acta. 1971 Sep 24;246(3):384–395. doi: 10.1016/0005-2787(71)90774-x. [DOI] [PubMed] [Google Scholar]
  263. Riggs H. G., Jr, Rosenblum E. D. Transfection of lysostaphin-treated cells of Staphylococcus aureus. J Virol. 1969 Jan;3(1):33–37. doi: 10.1128/jvi.3.1.33-37.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Riva S., Polsinelli M., Falaschi A. A new phage of Bacillus subtilis with infectious DNA having separable strands. J Mol Biol. 1968 Jul 28;35(2):347–356. doi: 10.1016/s0022-2836(68)80029-4. [DOI] [PubMed] [Google Scholar]
  265. Riva S., Polsinelli M. Relationship between competence for transfection and for transformation. J Virol. 1968 Jun;2(6):587–593. doi: 10.1128/jvi.2.6.587-593.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Roberts J. W., Steitz J. E. The reconstitution of infective bacteriophage R17. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1416–1421. doi: 10.1073/pnas.58.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Romig W. R. Infectivity of Bacillus subtilis bacteriophage deoxyribonucleic acids extracted from mature particles and from lysogenic hosts. Bacteriol Rev. 1968 Dec;32(4 Pt 1):349–357. [PMC free article] [PubMed] [Google Scholar]
  268. Roth T. F., Hayashi M. Allomorphic forms of bacteriophage phiX-174 replicative DNA. Science. 1966 Nov 4;154(3749):658–660. doi: 10.1126/science.154.3749.658. [DOI] [PubMed] [Google Scholar]
  269. Rudin L., Sjöström J. E., Lindberg M., Philipson L. Factors affecting competence for transformation in Staphylococcus aureus. J Bacteriol. 1974 Apr;118(1):155–164. doi: 10.1128/jb.118.1.155-164.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Rush M. G., Warner R. C. Molecular recombination in a circular genome-phi X174 and S13. Cold Spring Harb Symp Quant Biol. 1968;33:459–466. doi: 10.1101/sqb.1968.033.01.053. [DOI] [PubMed] [Google Scholar]
  271. Rush M. G., Warner R. C. Multiple length rings of phi-X174 and S13 replicative forms. 3. A possible intermediate in recombination. J Biol Chem. 1968 Sep 25;243(18):4821–4826. [PubMed] [Google Scholar]
  272. Rutberg B., Rutberg L. Growth of bacteriophage phi 105 and its deoxyribonucleic acid in radiation-sensitive mutants of Bacillus subtilis. J Virol. 1971 Dec;8(6):919–921. doi: 10.1128/jvi.8.6.919-921.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Rutberg L., Armentrout R. W. Low-frequency rescue of a genetic marker in deoxyribonucleic acid from Bacillus bacteriophage phi 105 by superinfecting bacteriophage. J Virol. 1970 Dec;6(6):768–771. doi: 10.1128/jvi.6.6.768-771.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Rutberg L., Hoch J. A., Spizizen J. Mechanism of transfection with deoxyribonucleic acid from the temperate Bacillus bacteriophage phi-105. J Virol. 1969 Jul;4(1):50–57. doi: 10.1128/jvi.4.1.50-57.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Rutberg L. Mapping of a temperate bacteriophage active on Bacillus subtilis. J Virol. 1969 Jan;3(1):38–44. doi: 10.1128/jvi.3.1.38-44.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Rytír V., Málek I. The effect of UV light and mitomycin C on the transfection of Bacillus subtilis 168 I. Folia Microbiol (Praha) 1969;14(3):190–193. doi: 10.1007/BF02872777. [DOI] [PubMed] [Google Scholar]
  277. Rüst P., Sinsheimer R. L. The process of infection with bacteriophage phi-X-174. XI. Infectivity of the complementary strand of the replicative form. J Mol Biol. 1967 Feb 14;23(3):545–552. doi: 10.1016/s0022-2836(67)80124-4. [DOI] [PubMed] [Google Scholar]
  278. SANDER E. EVIDENCE OF THE SYNTHESIS OF A DNA PHAGE IN LEAVES OF TOBACCO PLANTS. Virology. 1964 Dec;24:545–551. doi: 10.1016/0042-6822(64)90206-5. [DOI] [PubMed] [Google Scholar]
  279. SCHUSTER H., SCHRAMM G. Bestimmung der biologisch wirksamen Einheit in der Ribosenucleinsäure des Tabakmosaikvirus auf chemischem Wege. Z Naturforsch B. 1958 Nov;13B(11):697–704. [PubMed] [Google Scholar]
  280. SEKIGUCHI M., TAKETO A., TAKAGI Y. An infective deoxyribonucleic acid from bacteriophage phi-X174. Biochim Biophys Acta. 1960 Dec 4;45:199–200. doi: 10.1016/0006-3002(60)91443-8. [DOI] [PubMed] [Google Scholar]
  281. SINSHEIMER R. L., LAWRENCE M. IN VITRO SYNTHESIS AND PROPERTIES OF A PHI-X DNA-RNA HYBRID. J Mol Biol. 1964 Feb;8:289–296. doi: 10.1016/s0022-2836(64)80138-8. [DOI] [PubMed] [Google Scholar]
  282. SINSHEIMER R. L., STARMAN B., NAGLER C., GUTHRIE S. The process of infection with bacteriophage phi-XI74. I. Evidence for a "replicative form". J Mol Biol. 1962 Mar;4:142–160. doi: 10.1016/s0022-2836(62)80047-3. [DOI] [PubMed] [Google Scholar]
  283. STRACK H. B., KAISER A. D. ON THE STRUCTURE OF THE ENDS OF LAMBADA DNA. J Mol Biol. 1965 May;12:36–49. doi: 10.1016/s0022-2836(65)80280-7. [DOI] [PubMed] [Google Scholar]
  284. STRAUSS J. H., Jr A MODIFIED METHOD OF MS2-RNA ASSAY. J Mol Biol. 1964 Dec;10:422–422. doi: 10.1016/s0022-2836(64)80063-2. [DOI] [PubMed] [Google Scholar]
  285. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  286. Sabelnikov A. G., Avdeeva A. V., Ilyashenko Enhanced uptake of donor DNA by Ca2+ treated Escherichia coli cells. Mol Gen Genet. 1975 Jul 10;138(4):351–358. doi: 10.1007/BF00264805. [DOI] [PubMed] [Google Scholar]
  287. Sabelnikov A. G., Ditjatkin S. J., Iljashenko B. N. About the role of protamine in transfection. Biochim Biophys Acta. 1973 Mar 28;299(3):492–495. doi: 10.1016/0005-2787(73)90275-x. [DOI] [PubMed] [Google Scholar]
  288. Sabelnikov A. G., Moiseeva T. F., Avdeeva A. V., Ilyashenko B. N. Studies on DNA-recipient interaction. I. Investigation of the interaction between recipients and transfection stimulators with fluorescent probes. Biochim Biophys Acta. 1974 Dec 20;374(3):304–315. doi: 10.1016/0005-2787(74)90251-2. [DOI] [PubMed] [Google Scholar]
  289. Sakaki Y., Karu A. E., Linn S., Echols H. Purification and properties of the gamma-protein specified by bacteriophage lambda: an inhibitor of the host RecBC recombination enzyme. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2215–2219. doi: 10.1073/pnas.70.8.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Sander E. Alteration of fd phage in tobacco leaves. Virology. 1967 Sep;33(1):121–130. doi: 10.1016/0042-6822(67)90100-6. [DOI] [PubMed] [Google Scholar]
  291. Schekman R. W., Iwaya M., Bromstrup K., Denhardt D. T. The mechanism of replication of phi X174 single-stranded DNA. 3. An enzymic study of the structure of the replicative form II DNA. J Mol Biol. 1971 Apr 28;57(2):177–199. doi: 10.1016/0022-2836(71)90340-8. [DOI] [PubMed] [Google Scholar]
  292. Schekman R. W., Ray D. S. Polynucleotide ligase and phiX174 single strand synthesis. Nat New Biol. 1971 Jun 9;231(23):170–173. doi: 10.1038/newbio231170a0. [DOI] [PubMed] [Google Scholar]
  293. Schekman R., Weiner A., Kornberg A. Multienzyme systems of DNA replication. Science. 1974 Dec 13;186(4168):987–993. doi: 10.1126/science.186.4168.987. [DOI] [PubMed] [Google Scholar]
  294. Schindler J. Inhibition of the infective activity of phage f2 and its infectious RNA by histone. Experientia. 1966 Mar 15;22(3):159–160. doi: 10.1007/BF01897707. [DOI] [PubMed] [Google Scholar]
  295. Schlaeger E. J., Spatz H. C. Specific recognition in gene conversion. The extent of repair synthesis in SPP1 transfection of B. subtilis. Mol Gen Genet. 1974 May 21;130(2):165–175. doi: 10.1007/BF00269087. [DOI] [PubMed] [Google Scholar]
  296. Schlegel R. A., Rechsteiner M. C. Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell. 1975 Aug;5(4):371–379. doi: 10.1016/0092-8674(75)90056-2. [DOI] [PubMed] [Google Scholar]
  297. Schmit A. S., Pless D. D., Lennarz W. J. Some aspects of the chemistry and biochemistry of membranes of gram-positive bacteria. Ann N Y Acad Sci. 1974 May 10;235(0):91–104. doi: 10.1111/j.1749-6632.1974.tb43259.x. [DOI] [PubMed] [Google Scholar]
  298. Schott H., Kössel H. Synthesis of phage specific deoxyribonucleic acid fragments. I. Synthesis of four undecanucleotides complementary to a mutated region of the coat protein cistron of fd phage deoxyribonucleic acid. J Am Chem Soc. 1973 May 30;95(11):3778–3785. doi: 10.1021/ja00792a050. [DOI] [PubMed] [Google Scholar]
  299. Schröder C., Kaerner H. -C. Infectivity to Escherichia coli spheroplasts of linear phiX174 DNA strands derived from the replicative form (RFII) of phiX DNA. FEBS Lett. 1971 Nov 15;19(1):38–44. doi: 10.1016/0014-5793(71)80600-2. [DOI] [PubMed] [Google Scholar]
  300. Sclair M., Edgell M. H., Hutchinson C. A., 3rd Mapping of new Escherichia coli K and 15 restriction sites on specific fragments of bacteriophage phi X174. J Virol. 1973 Mar;11(3):378–385. doi: 10.1128/jvi.11.3.378-385.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Seeburg P. H., Schaller H. Mapping and characterization of promoters in bacteriophages fd, f1 and m13. J Mol Biol. 1975 Feb 25;92(2):261–277. doi: 10.1016/0022-2836(75)90226-0. [DOI] [PubMed] [Google Scholar]
  302. Sekiguchi M., Iida S. Mutants of Escherichia coli permeable to actinomycin. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2315–2320. doi: 10.1073/pnas.58.6.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Sellers M. I., Nakamura R., Tokunaga T. The effects of ultraviolet irradiation on mycobacteriophages and their infectious DNAs. J Gen Virol. 1970 Jun;7(3):233–247. doi: 10.1099/0022-1317-7-3-233. [DOI] [PubMed] [Google Scholar]
  304. Sellers M. I., Tokunaga T. Further studies of infectious DNA extracted from mycobacteriophages. J Exp Med. 1966 Feb 1;123(2):327–340. doi: 10.1084/jem.123.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Seroka K., Wackernagel W. In vivo effects of recBC DNase, exonuclease I, and DNA polymerases of Escherichia coli on the infectivity of native and single-stranded DNA of bacteriophage T7. J Virol. 1977 Mar;21(3):906–912. doi: 10.1128/jvi.21.3.906-912.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Setlow J. K., Boling M. E., Allison D. P., Beattie K. L. Relationship between prophage induction and transformation in Haemophilus influenzae. J Bacteriol. 1973 Jul;115(1):153–161. doi: 10.1128/jb.115.1.153-161.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Seto A., Shinozawa T., Maeda A. Inactivation of infectious deoxyribonucleic acid of bacteriophage phi chi X 174 by colicin E2. Biochim Biophys Acta. 1973 Oct 26;324(3):305–308. doi: 10.1016/0005-2787(73)90276-1. [DOI] [PubMed] [Google Scholar]
  308. Sgaramella V., Ehrlich S. D., Bursztyn H., Lederberg J. Enhancement of transfecting activity of bacteriophage P22 DNA upon exonucleolytic erosion. J Mol Biol. 1976 Aug 25;105(4):587–602. doi: 10.1016/0022-2836(76)90237-0. [DOI] [PubMed] [Google Scholar]
  309. Sheldrick P., Laithier M., Lando D., Ryhiner M. L. Infectious DNA from herpes simplex virus: infectivity of double-stranded and single-stranded molecules. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3621–3625. doi: 10.1073/pnas.70.12.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Shiba T., Miyake T. New type of infectious complex of E. coli RNA phage. Nature. 1975 Mar 13;254(5496):157–158. doi: 10.1038/254157a0. [DOI] [PubMed] [Google Scholar]
  311. Siegel J. E., Hayashi M. Complementary strand infectivity in phi X174 replicative form DNA. J Mol Biol. 1967 Aug 14;27(3):443–451. doi: 10.1016/0022-2836(67)90050-2. [DOI] [PubMed] [Google Scholar]
  312. Silver S., Toth K., Scribner H. Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli. J Bacteriol. 1975 Jun;122(3):880–885. doi: 10.1128/jb.122.3.880-885.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Silverstein J. L., Goldberg E. B. T4 DNA injection. I. Growth cycle of a gene 2 mutant. Virology. 1976 Jul 1;72(1):195–211. doi: 10.1016/0042-6822(76)90323-8. [DOI] [PubMed] [Google Scholar]
  314. Silverstein J. L., Goldberg E. B. T4 DNA injection. II. Protection of entering DNA from host exonuclease V. Virology. 1976 Jul 1;72(1):212–223. doi: 10.1016/0042-6822(76)90324-x. [DOI] [PubMed] [Google Scholar]
  315. Singh R. N., Pitale M. P. Competence and deoxyribonucleic acid uptake in Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):864–866. doi: 10.1128/jb.95.3.864-866.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Sinsheimer R. L., Lawrence M., Nagler C. The process of infection with bacteriophage phi-X174. 8. Centrifugal analysis in alkaline media of the RF DNA at various stages of infection. J Mol Biol. 1965 Dec;14(2):348–360. doi: 10.1016/s0022-2836(65)80186-3. [DOI] [PubMed] [Google Scholar]
  317. Sjöström J. E., Lindberg M., Philipson L. Competence for transfection in Staphylococcus aureus. J Bacteriol. 1973 Feb;113(2):576–585. doi: 10.1128/jb.113.2.576-585.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Sjöström J. E., Lindberg M., Philipson L. Transfection of Staphylococcus aureus with bacteriophage deoxyribonucleic acid. J Bacteriol. 1972 Jan;109(1):285–291. doi: 10.1128/jb.109.1.285-291.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Sjöström J. E., Philipson L. Role of the phi 11 phage genome in competence of Staphylococcus aureus. J Bacteriol. 1974 Jul;119(1):19–32. doi: 10.1128/jb.119.1.19-32.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Smith J. D., Arber W., Kühnlein U. Host specificity of DNA produced by Escherichia coli. XIV. The role of nucleotide methylation in in vivo B-specific modification. J Mol Biol. 1972 Jan 14;63(1):1–8. doi: 10.1016/0022-2836(72)90517-7. [DOI] [PubMed] [Google Scholar]
  321. Smotkin D., Gianni A. M., Rozenblatt S., Weinberg R. A. Infectious viral DNA of murine leukemia virus. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4910–4913. doi: 10.1073/pnas.72.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Spatz H. C. A determination of the efficiency of uptake of SP50 DNA by competent cells of B. subtilis. Mol Gen Genet. 1972;117(2):125–128. doi: 10.1007/BF00267609. [DOI] [PubMed] [Google Scholar]
  323. Spatz H. C., Trautner T. A. One way to do experiments on gene conversion? Transfection with heteroduplex SPP1 DNA. Mol Gen Genet. 1970;109(1):84–106. doi: 10.1007/BF00334048. [DOI] [PubMed] [Google Scholar]
  324. Spatz H. C., Trautner T. A. The role of recombination in transfection of B. subtilis. Mol Gen Genet. 1971;113(2):174–190. doi: 10.1007/BF00333191. [DOI] [PubMed] [Google Scholar]
  325. Spiegelman S., Haruna I., Holland I. B., Beaudreau G., Mills D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A. 1965 Sep;54(3):919–927. doi: 10.1073/pnas.54.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Staniewski R., Lorkiewica Z., Chomicka Z. Transfection of Rhizobium meliloti. Acta Microbiol Pol A. 1971;4(1):97–100. [PubMed] [Google Scholar]
  327. Stewart C. R., Pagel M. F. Relationship between transformation in Bacillus subtilis and infection by bacteriophage SP02. J Bacteriol. 1973 Nov;116(2):1082–1083. doi: 10.1128/jb.116.2.1082-1083.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Strauss J. H., Jr, Sinsheimer R. L. Characterization of an infectivity assay for the ribonucleic acid of bacteriophage MS2. J Virol. 1967 Aug;1(4):711–716. doi: 10.1128/jvi.1.4.711-716.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Streips U. N., Welker N. E. Competence-inducing factor of Bacillus stearothermophilus. J Bacteriol. 1971 Jun;106(3):955–959. doi: 10.1128/jb.106.3.955-959.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  330. Streips U. N., Welker N. E. Factors affecting transfection in Bacillus stearothermophilus. J Bacteriol. 1971 Jun;106(3):960–965. doi: 10.1128/jb.106.3.960-965.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Streips U. N., Welker N. E. Infection of Bacillus stearothermophilus with bacteriophage deoxyribonucleic acid. J Bacteriol. 1969 Jul;99(1):344–346. doi: 10.1128/jb.99.1.344-346.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  332. Studier F. W. Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J Mol Biol. 1975 May 15;94(2):283–295. doi: 10.1016/0022-2836(75)90083-2. [DOI] [PubMed] [Google Scholar]
  333. Summers W. C. A simple method for extraction of RNA from E. coli utilizing diethyl pyrocarbonate. Anal Biochem. 1970 Feb;33(2):459–463. doi: 10.1016/0003-2697(70)90316-7. [DOI] [PubMed] [Google Scholar]
  334. Sumper M., Luce R. Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage Qbeta replicase. Proc Natl Acad Sci U S A. 1975 Jan;72(1):162–166. doi: 10.1073/pnas.72.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Suzuki M., Azegami M. Heterologous transfection with bacteriophage phiX174 DNA. Unusual heterogeneous products. Biochim Biophys Acta. 1977 Feb 16;474(4):646–661. doi: 10.1016/0005-2787(77)90084-3. [DOI] [PubMed] [Google Scholar]
  336. Suzuki M., Kaneko-Tanaka Y., Azegami M. Transfection of non-host bacterial spheroplasts with bacteriophage phi chi 174 DNA. Nature. 1974 Nov 22;252(5481):319–320. doi: 10.1038/252319a0. [DOI] [PubMed] [Google Scholar]
  337. Syvanen M. In vitro genetic recombination of bacteriophage lambda. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2496–2499. doi: 10.1073/pnas.71.6.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. TABOR H. The stabilization of Bacillus subtilis transforming principle by spermine. Biochem Biophys Res Commun. 1961 Mar 10;4:228–231. doi: 10.1016/0006-291x(61)90276-5. [DOI] [PubMed] [Google Scholar]
  339. TAKETO A. STUDIES ON THE INFECTIOUS DNA FROM BACTERIAL VIRUS PHIX174 AND FROM THE VIRUS-INFECTED CELLS. J Biochem. 1963 Dec;54:520–529. doi: 10.1093/oxfordjournals.jbchem.a127825. [DOI] [PubMed] [Google Scholar]
  340. TOKUNAGA T., SELLERS M. INFECTION OF MYCOBACTERIUM SMEGMATIS WITH D29 PHAGE DNA. J Exp Med. 1964 Jan 1;119:139–149. doi: 10.1084/jem.119.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Takanami M., Kojo H. Cleavage site specificity of an endonuclease prepared from Heamophilus influenzae strain H-I. FEBS Lett. 1973 Feb 1;29(3):267–270. doi: 10.1016/0014-5793(73)80035-3. [DOI] [PubMed] [Google Scholar]
  342. Takano T., Watanabe T. Effects of helper phage on infection with lambda DNA of restrictive bacteria carrying R factor. Virology. 1967 Apr;31(4):722–725. doi: 10.1016/0042-6822(67)90203-6. [DOI] [PubMed] [Google Scholar]
  343. Takano T., Watanabe T., Fukasawa T. Specific inactivation of infectious lambda DNA by sonicates of restrictive bacteria with R factors. Biochem Biophys Res Commun. 1966 Oct 20;25(2):192–198. doi: 10.1016/0006-291x(66)90579-1. [DOI] [PubMed] [Google Scholar]
  344. Taketo A., Hayashi A., Kuno S. Sensitivity of Escherichia coli to viral nucleic acid. IV. Transfection of phage DNA to mutant thermosensitive in wall synthesis. J Biochem. 1972 Mar;71(3):513–518. [PubMed] [Google Scholar]
  345. Taketo A., Kuno S. Sensitivity of Escherichia coli to viral nucleic acid. I. Effect of lysozyme, EDTA, penicillin and osmotic shock treatment. J Biochem. 1969 Mar;65(3):361–368. doi: 10.1093/oxfordjournals.jbchem.a129022. [DOI] [PubMed] [Google Scholar]
  346. Taketo A., Kuno S. Sensitivity of Escherichia coli to viral nucleic acid. II. Development of competence in Escherichia coli CT during growth in a hypertonic medium. J Biochem. 1969 Mar;65(3):369–373. doi: 10.1093/oxfordjournals.jbchem.a129023. [DOI] [PubMed] [Google Scholar]
  347. Taketo A., Kuno S. Sensitivity of Escherichia coli to viral nucleic acid. VII. Further studies on Ca2+-induced competence. J Biochem. 1974 Jan;75(1):59–67. doi: 10.1093/oxfordjournals.jbchem.a130383. [DOI] [PubMed] [Google Scholar]
  348. Taketo A. Sensitivity of Escherichia coli to viral nucleic acid, X. Ba2+-induced competence for transfecting DNA. Z Naturforsch C. 1975 Jul-Aug;30(4):520–522. doi: 10.1515/znc-1975-7-817. [DOI] [PubMed] [Google Scholar]
  349. Taketo A. Sensitivity of Escherichia coli to viral nucleic acid. 3. Competence of glycine-spheroplasts. J Biochem. 1972 Mar;71(3):507–512. [PubMed] [Google Scholar]
  350. Taketo A. Sensitivity of Escherichia coli to viral nucleic acid. 8. Idiosyncrasy of Ca2+-dependent competence for DNA. J Biochem. 1974 Apr;75(4):895–904. doi: 10.1093/oxfordjournals.jbchem.a130463. [DOI] [PubMed] [Google Scholar]
  351. Taketo A. Sensitivity of Escherichia coli to viral nucleic acid. V. Competence of calcium-treated cells. J Biochem. 1972 Oct;72(4):973–979. doi: 10.1093/oxfordjournals.jbchem.a129988. [DOI] [PubMed] [Google Scholar]
  352. Taketo A., Yasuda S., Sekiguchi M. Initial step of excision repair in Escherichia coli: replacement of defective function of uvr mutants by T4 endonuclease V. J Mol Biol. 1972 Sep 14;70(1):1–14. doi: 10.1016/0022-2836(72)90160-x. [DOI] [PubMed] [Google Scholar]
  353. Tamaki S., Matsuhashi M. Increase in sensitivity to antibiotics and lysozyme on deletion of lipopolysaccharides in Escherichia coli strains. J Bacteriol. 1973 Apr;114(1):453–454. doi: 10.1128/jb.114.1.453-454.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Tamaki S., Sato T., Matsuhashi M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J Bacteriol. 1971 Mar;105(3):968–975. doi: 10.1128/jb.105.3.968-975.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  355. Tanner D., Oishi M. The effect of bacteriophage T4 infection on an ATP-dependent deoxyribonuclease in Escherichia coli. Biochim Biophys Acta. 1971 Feb 11;228(3):767–769. doi: 10.1016/0005-2787(71)90747-7. [DOI] [PubMed] [Google Scholar]
  356. Tessman E. S. Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J Mol Biol. 1966 May;17(1):218–236. doi: 10.1016/s0022-2836(66)80104-3. [DOI] [PubMed] [Google Scholar]
  357. Thomas M., Cameron J. R., Davis R. W. Viable molecular hybrids of bacteriophage lambda and eukaryotic DNA. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4579–4583. doi: 10.1073/pnas.71.11.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Thompson B. J., Escarmis C., Parker B., Slater W. C., Doniger J., Tessman I., Warner R. C. Figure-8 configuration of dimers of S13 and phiX174 replicative form DNA. J Mol Biol. 1975 Feb 5;91(4):409–419. doi: 10.1016/0022-2836(75)90269-7. [DOI] [PubMed] [Google Scholar]
  359. Tokunaga T., Nakamura R. M. Infection of Mycobacterium tuberculosis with deoxyribonucleic acid extracted from mycobacteriophage B1. J Virol. 1967 Apr;1(2):448–449. doi: 10.1128/jvi.1.2.448-449.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  360. Tokunaga T., Nakamura R. M. Infection of competent Mycobacterium smegmatis with deoxyribonucleic acid extracted from bacteriophage B1. J Virol. 1968 Feb;2(2):110–117. doi: 10.1128/jvi.2.2.110-117.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Transfection of restrictionless Escherichia coli by bacteriophage T7 dna: effect of in vitro erosion of DNA by gamma exonuclease. J Mol Biol. 1976 Aug 25;105(4):603–609. doi: 10.1016/0022-2836(76)90238-2. [DOI] [PubMed] [Google Scholar]
  362. Trautner T. A., Pawlek B., Bron S., Anagnostopoulos C. Restriction and modification in B. subtilis. Biological aspects. Mol Gen Genet. 1974;131(3):181–191. doi: 10.1007/BF00267958. [DOI] [PubMed] [Google Scholar]
  363. Trautner T. A., Spatz H. C. Transfection in B. subtilis. Curr Top Microbiol Immunol. 1973;62:61–88. doi: 10.1007/978-3-642-65772-6_3. [DOI] [PubMed] [Google Scholar]
  364. Trouet A., Deprez-de Campeneere D., De Duve C. Chemotherapy through lysosomes with a DNA-daunorubicin complex. Nat New Biol. 1972 Sep 27;239(91):110–112. doi: 10.1038/newbio239110a0. [DOI] [PubMed] [Google Scholar]
  365. Tsien H. C., Reilly B. E., Anderson D. L. Rescue of genetic markers from bacteriophage phi 29 DNA fragments. Pathol Microbiol (Basel) 1970;36(5):288–288. doi: 10.1159/000162474. [DOI] [PubMed] [Google Scholar]
  366. Uhlmann A., Geider K. Interaction of DNA with DNA binding proteins. III. Infectivity of protein-complexed phage fd DNA in Escherichia coli spheroplasts. Biochim Biophys Acta. 1977 Feb 16;474(4):639–645. doi: 10.1016/0005-2787(77)90083-1. [DOI] [PubMed] [Google Scholar]
  367. Unger R. C., Clark A. J. Interaction of the recombination pathways of bacteriophage lambda and its host Escherichia coli K12: effects on exonuclease V activity. J Mol Biol. 1972 Oct 14;70(3):539–548. doi: 10.1016/0022-2836(72)90558-x. [DOI] [PubMed] [Google Scholar]
  368. VAN ARKEL G. A., VAN DE POL J. H., COHEN J. A. Genetic recombination and marker rescue of urea-disrupted bacteriophage T4 in spheroplasts of E. coli. Virology. 1961 Apr;13:546–548. doi: 10.1016/0042-6822(61)90286-0. [DOI] [PubMed] [Google Scholar]
  369. Van Den Hondel C. A., Weijers A., Konings R. N., Schoenmakers J. G. Studies on bacteriophage M13 DNA. 2. The gene order of the M13 genome. Eur J Biochem. 1975 May 6;53(2):559–567. doi: 10.1111/j.1432-1033.1975.tb04099.x. [DOI] [PubMed] [Google Scholar]
  370. Vasil I. K., Giles K. L. Induced transfer of higher plant chloroplasts into fungal protoplasts. Science. 1975 Nov 14;190(4215):680–680. doi: 10.1126/science.127380. [DOI] [PubMed] [Google Scholar]
  371. Veldhuisen G., Poelman M. C., Cohen J. A. Genetic transformation of the bacteriophage T4. I. An outline and some properties of the phage transformation system. Biochim Biophys Acta. 1968 Jun 18;161(1):94–108. [PubMed] [Google Scholar]
  372. Veldhuisen G., Poelman M. C., Cohen J. A. Genetic transformation of the bacteriophage T4. II. Biological activity of Dna fragments. Biochim Biophys Acta. 1968 Jun 18;161(1):109–114. doi: 10.1016/0005-2787(68)90298-0. [DOI] [PubMed] [Google Scholar]
  373. Vosberg H. P., Hoffmann-Berling H. DNA synthesis in nucleotide-permeable Escherichia coli cells. I. Preparation and properties of ether-treated cells. J Mol Biol. 1971 Jun 28;58(3):739–753. doi: 10.1016/0022-2836(71)90037-4. [DOI] [PubMed] [Google Scholar]
  374. Vovis G. F., Horiuchi K., Zinder N. D. Endonuclease R-EcoRII restriction of bacteriophage f1 DNA in vitro: ordering of genes V and VII, location of an RNA promotor for gene VIII. J Virol. 1975 Sep;16(3):674–684. doi: 10.1128/jvi.16.3.674-684.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  375. WEIDEL W., PELZER H. BAGSHAPED MACROMOLECULES--A NEW OUTLOOK ON BACTERIAL CELL WALLS. Adv Enzymol Relat Areas Mol Biol. 1964;26:193–232. doi: 10.1002/9780470122716.ch5. [DOI] [PubMed] [Google Scholar]
  376. Wackernagel W. An improved spheroplast assay for lambda-DNA and the influence of the bacterial genotype on the transfection rate. Virology. 1972 Apr;48(1):94–103. doi: 10.1016/0042-6822(72)90117-1. [DOI] [PubMed] [Google Scholar]
  377. Wackernagel W. Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochem Biophys Res Commun. 1973 Mar 17;51(2):306–311. doi: 10.1016/0006-291x(73)91257-6. [DOI] [PubMed] [Google Scholar]
  378. Wackernagel W., Radding C. M. Formation in vitro of infective joint molecules of lambda DNA by T4 gene-32 protein. Proc Natl Acad Sci U S A. 1974 Feb;71(2):431–435. doi: 10.1073/pnas.71.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Wackernagel W., Radding C. M. Transfection by half molecules and inverted molecules of lambda DNA: requirement for exo and -promoted recombination. Virology. 1973 Apr;52(2):425–432. doi: 10.1016/0042-6822(73)90337-1. [DOI] [PubMed] [Google Scholar]
  380. Wackernagel W. UV-sensitivity and UV-mutability of infectious lambdaDNA: reactivation, protection and mutability in various assay systems. Mol Gen Genet. 1974;135(1):61–71. doi: 10.1007/BF00433902. [DOI] [PubMed] [Google Scholar]
  381. Wackernagel W., Winkler U. A mutation in Escherichia coli enhancing the UV-mutability of phage lambda but not of its infectious DNA in a spheroplast assay. Mol Gen Genet. 1972;114(1):68–79. doi: 10.1007/BF00268748. [DOI] [PubMed] [Google Scholar]
  382. Wagner R., Jr, Meselson M. Repair tracts in mismatched DNA heteroduplexes. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4135–4139. doi: 10.1073/pnas.73.11.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  383. Wais A. C., Goldberg E. B. Growth and transformation of phage T4 in Escherichia coli B-4, Salmonella, Aerobacter, Proteus, and Serratia. Virology. 1969 Oct;39(2):153–161. doi: 10.1016/0042-6822(69)90035-x. [DOI] [PubMed] [Google Scholar]
  384. Wang J. C., Kaiser A. D. Evidence that the cohesive ends of mature lambda DNA are generated by the gene A product. Nat New Biol. 1973 Jan 3;241(105):16–17. doi: 10.1038/newbio241016a0. [DOI] [PubMed] [Google Scholar]
  385. Weber K., Groeschel-Stewart U. Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4561–4564. doi: 10.1073/pnas.71.11.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  386. Weinstein B. I., Mackal R. P., Werninghaus B., Evans E. A., Jr Bacteriophage formation in disrupted cell preparations. Virology. 1971 Jan;43(1):185–197. doi: 10.1016/0042-6822(71)90236-4. [DOI] [PubMed] [Google Scholar]
  387. Weinstein B. I., Mackal R. P., Werninghaus B., Evans E. A., Jr Studies of DNA-infected disrupted cell preparations. Proc Natl Acad Sci U S A. 1969 Feb;62(2):420–427. doi: 10.1073/pnas.62.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  388. Weisbeek P. J., Van de Pol J. H., Van Arkel G. A. Genetic characterization of the DNA of the bacteriophage phi X174 70 S particle. Virology. 1972 May;48(2):456–462. doi: 10.1016/0042-6822(72)90056-6. [DOI] [PubMed] [Google Scholar]
  389. Weisbeek P. J., van de Pol J. H. Bological activity of phi X174 replicative form DNA fragments. Biochim Biophys Acta. 1970 Dec 14;224(2):328–338. [PubMed] [Google Scholar]
  390. Weisbeek P. J., van de Pol J. H., van Arkel G. A. Mapping of host range mutants of bacteriophage phiX174. Virology. 1973 Apr;52(2):408–416. doi: 10.1016/0042-6822(73)90335-8. [DOI] [PubMed] [Google Scholar]
  391. Weppelman R. M., Brinton C. C., Jr Infection of Pseudomonas aeruginosa spheroplasts by RNA from a pilus phage. Virology. 1970 May;41(1):116–134. doi: 10.1016/0042-6822(70)90060-7. [DOI] [PubMed] [Google Scholar]
  392. White R. L., Fox M. S. On the molecular basis of high negative interference. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1544–1548. doi: 10.1073/pnas.71.4.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  393. Wickner S., Hurwitz J. Conversion of phiX174 viral DNA to double-stranded form by purified Escherichia coli proteins. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4120–4124. doi: 10.1073/pnas.71.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  394. Wildenberg J., Meselson M. Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2202–2206. doi: 10.1073/pnas.72.6.2202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  395. Wilkins A. S., Mistry J. Phage lambda's generalized recombination system. Study of the intracellular DNA pool during lytic infection. Mol Gen Genet. 1974 Apr 3;129(4):275–293. doi: 10.1007/BF00265693. [DOI] [PubMed] [Google Scholar]
  396. Wilkinson R. G., Gemski P., Jr, Stocker B. A. Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J Gen Microbiol. 1972 May;70(3):527–554. doi: 10.1099/00221287-70-3-527. [DOI] [PubMed] [Google Scholar]
  397. Willecke K., Lange R., Krüger A., Reber T. Cotransfer of two linked human genes into cultured mouse cells. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1274–1278. doi: 10.1073/pnas.73.4.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  398. Willecke K., Ruddle F. H. Transfer of the human gene for hypoxanthine-guanine phosphoribosyltransferase via isolated human metaphase chromosomes into mouse L-cells. Proc Natl Acad Sci U S A. 1975 May;72(5):1792–1796. doi: 10.1073/pnas.72.5.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  399. Witholt B., Heerikhuizen H. V., De Leij L. How does lysozyme penetrate through the bacterial outer membrane? Biochim Biophys Acta. 1976 Sep 7;443(3):534–544. doi: 10.1016/0005-2736(76)90471-5. [DOI] [PubMed] [Google Scholar]
  400. Wolstenholme D. R., Vermeulen C. A., Venema G. Evidence for the involvement of membranous bodies in the processes leading to genetic transformation in Bacillus subtilis. J Bacteriol. 1966 Oct;92(4):1111–1121. doi: 10.1128/jb.92.4.1111-1121.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  401. YARUS M., SINSHEIMER R. L. THE U.V.-RESISTANCE OF DOUBLE-STRANDED PHIX174 DNA. J Mol Biol. 1964 Apr;8:614–615. doi: 10.1016/s0022-2836(64)80018-8. [DOI] [PubMed] [Google Scholar]
  402. YOUNG E. T., 2nd, SINSHEIMER R. L. A COMPARISON OF THE INITIAL ACTIONS OF SPLEEN DEOXYRIBONUCLEASE AND PANCREATIC DEOXYRIBONUCLEASE. J Biol Chem. 1965 Mar;240:1274–1280. [PubMed] [Google Scholar]
  403. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]
  404. Yamamoto M., Ishizawa M., Endo H. Ribonucleic acid-permeable mutant of Escherichia coli. J Mol Biol. 1971 May 28;58(1):103–115. doi: 10.1016/0022-2836(71)90235-x. [DOI] [PubMed] [Google Scholar]
  405. Yasbin R. E., Wilson G. A., Young F. E. Transformation and transfection in lysogenic strains of Bacillus subtilis 168. J Bacteriol. 1973 Feb;113(2):540–548. doi: 10.1128/jb.113.2.540-548.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  406. Yasbin R. E., Wilson G. A., Young F. E. Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J Bacteriol. 1975 Jan;121(1):296–304. doi: 10.1128/jb.121.1.296-304.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  407. Yasbin R. E., Young F. E. The influence of temperate bacteriophage phi105 on transformation and transfection in Bacillus subtilis. Biochem Biophys Res Commun. 1972 Apr 28;47(2):365–371. doi: 10.1016/0006-291x(72)90722-x. [DOI] [PubMed] [Google Scholar]
  408. Young E. T., 2nd, Sinsheimer R. L. Vegetative bacteriophage lambda-DNA. I. Infectivity in a spheroplast assay. J Mol Biol. 1967 Nov 28;30(1):147–164. doi: 10.1016/0022-2836(67)90250-1. [DOI] [PubMed] [Google Scholar]
  409. Young E. T., 2nd, Sinsheimer R. L. Vegetative bacteriophage lambda-DNA. II. Physical characterization and replication. J Mol Biol. 1967 Nov 28;30(1):165–200. doi: 10.1016/0022-2836(67)90251-3. [DOI] [PubMed] [Google Scholar]
  410. Young F. E., Jackson A. P. Extent and significance of contamination of DNA by teichoic acid in Bacillus subtilis. Biochem Biophys Res Commun. 1966 May 25;23(4):490–495. doi: 10.1016/0006-291x(66)90755-8. [DOI] [PubMed] [Google Scholar]
  411. Zgaga V. Formation of bacteriophage lambda infective particles from lambda DNA in the presence of the crude extract of Escherichia coli K12 S. Virology. 1967 Mar;31(3):559–562. doi: 10.1016/0042-6822(67)90240-1. [DOI] [PubMed] [Google Scholar]
  412. Zweerink H., Goldberg E. B. Transformationof phage T4 by small denatured DNA fragments. Virology. 1970 May;41(1):175–178. doi: 10.1016/0042-6822(70)90066-8. [DOI] [PubMed] [Google Scholar]
  413. va de POL J. H., VELDHUISEN G., COHEN J. A. Phage transformation: a new criterium for the biological activity of bacteriophage DNA. Biochim Biophys Acta. 1961 Apr 1;48:417–418. doi: 10.1016/0006-3002(61)90501-7. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES