Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1978 Jun;42(2):251–273. doi: 10.1128/mr.42.2.251-273.1978

Evolutionary aspects of autotrophy.

J R Quayle, T Ferenci
PMCID: PMC281430  PMID: 353476

Full text

PDF
251

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson P. H. Chemical events on the primitive Earth. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1365–1372. doi: 10.1073/pnas.55.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anthony C. The biochemistry of methylotrophic micro-organisms. Sci Prog. 1975 Summer;62(246):167–206. [PubMed] [Google Scholar]
  3. Babel W., Miethe D. Alternative zur Reaktionsfolge des Allulose-6-Phosphat-Weges bei einem methylotrophen Bakterium. Z Allg Mikrobiol. 1974;14(2):153–156. doi: 10.1002/jobm.3630140210. [DOI] [PubMed] [Google Scholar]
  4. Bassham J. A. Photosynthetic carbon metabolism. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2877–2882. doi: 10.1073/pnas.68.11.2877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bassham J. A. The control of photosynthetic carbon metabolism. Science. 1971 May 7;172(3983):526–534. doi: 10.1126/science.172.3983.526. [DOI] [PubMed] [Google Scholar]
  6. Broda E. The begginning of photosynthesis. Orig Life. 1975 Jan-Apr;6(1-2):247–251. doi: 10.1007/BF01372411. [DOI] [PubMed] [Google Scholar]
  7. Buchanan B. B., Sirevåg R. Ribulose 1,5-diphosphate carboxylase and Cholorobium thiosulfatophilum. Arch Microbiol. 1976 Aug;109(1-2):15–19. doi: 10.1007/BF00425107. [DOI] [PubMed] [Google Scholar]
  8. CALVIN M. Chemical and photochemical reactions of thioctic acid and related disulfides. Fed Proc. 1954 Sep;13(3):697–711. [PubMed] [Google Scholar]
  9. CALVIN M., PON N. G. Carboxylations and decarboxylations. J Cell Comp Physiol. 1959 Dec;54:51–74. doi: 10.1002/jcp.1030540407. [DOI] [PubMed] [Google Scholar]
  10. CHARALAMPOUS F. C. Mechanism of formation of erythrulose-1-phosphate by phosphoketotetrose aldolase of rat liver. J Biol Chem. 1954 Nov;211(1):249–262. [PubMed] [Google Scholar]
  11. Cairns-Smith A. G., Walker G. L. Primitive metabolsim. Curr Mod Biol. 1974 May;5(4):173–186. [PubMed] [Google Scholar]
  12. Chandra T. S., Shethna Y. I. Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus. J Bacteriol. 1977 Aug;131(2):389–398. doi: 10.1128/jb.131.2.389-398.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colby J., Zatman L. J. Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs. Biochem J. 1975 Jun;148(3):513–520. doi: 10.1042/bj1480513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Colby J., Zatman L. J. Tricarboxylic acid-cycle and related enzymes in restricted facultative methylotrophs. Biochem J. 1975 Jun;148(3):505–511. doi: 10.1042/bj1480505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cox R. B., Quayle J. R. The autotrophic growth of Micrococcus denitrificans on Methanol. Biochem J. 1975 Sep;150(3):569–571. doi: 10.1042/bj1500569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cox R. B., Zatman L. J. Hexose phosphate synthase in trimethylamine-grown bacterium 2B2, a facultative methylotroph. Biochem J. 1974 Aug;141(2):605–608. doi: 10.1042/bj1410605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DISCHE Z., LANDSBERG E. A colorimetric procedure for the determination of triose phosphate and fructose-1,6-diphosphate in presence of other sugars. Biochim Biophys Acta. 1960 Mar 25;39:144–147. doi: 10.1016/0006-3002(60)90130-x. [DOI] [PubMed] [Google Scholar]
  18. Egami F. Comment on e broda's recent publications on the evolution of energy metabolism. J Mol Evol. 1976 Dec 30;8(4):387–388. doi: 10.1007/BF01739263. [DOI] [PubMed] [Google Scholar]
  19. Evans M. C., Buchanan B. B., Arnon D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):928–934. doi: 10.1073/pnas.55.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
  21. Ferenci T., Strom T., Quayle J. R. Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. Biochem J. 1974 Dec;144(3):477–486. doi: 10.1042/bj1440477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. GARRISON W. M., MORRISON D. C., HAMILTON J. G., BENSON A. A., CALVIN M. Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science. 1951 Oct 19;114(2964):416–418. doi: 10.1126/science.114.2964.416. [DOI] [PubMed] [Google Scholar]
  23. Gabel N. W., Ponnamperuma C. Model for origin of monosaccharides. Nature. 1967 Nov 4;216(5114):453–455. doi: 10.1038/216453a0. [DOI] [PubMed] [Google Scholar]
  24. Goldberg I., Rock J. S., Ben-Bassat A., Mateles R. I. Bacterial yields on methanol, methylamine, formaldehyde, and formate. Biotechnol Bioeng. 1976 Dec;18(12):1657–1668. doi: 10.1002/bit.260181202. [DOI] [PubMed] [Google Scholar]
  25. HOROWITZ N. H., MILLER S. L. Current theories on the origin of life. Fortschr Chem Org Naturst. 1962;20:423–459. doi: 10.1007/978-3-7091-7153-0_10. [DOI] [PubMed] [Google Scholar]
  26. Hofmann K., Sawistowsky J., Babel W. Einfluss definierter Substrat-Limitationen auf das Enzym- und Metabolitmuster des methylotrophen Bakteriums Pseudomonas W6. Z Allg Mikrobiol. 1975;15(8):599–604. doi: 10.1002/jobm.3630150804. [DOI] [PubMed] [Google Scholar]
  27. Horowitz N. H. On the Evolution of Biochemical Syntheses. Proc Natl Acad Sci U S A. 1945 Jun;31(6):153–157. doi: 10.1073/pnas.31.6.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. JOHNSON P. A., QUAYLE J. R. MICROBIAL GROWTH ON C1 COMPOUNDS. SYNTHESIS OF CELL CONSTITUENTS BY METHANE- AND METHANOL-GROWN PSEUDOMONAS METHANICA. Biochem J. 1965 Jun;95:859–867. doi: 10.1042/bj0950859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. KREBS H. A., KORNBERG H. L., BURTON K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212–298. [PubMed] [Google Scholar]
  30. Kato N., Ohashi H., Tani Y., Ogata K. 3-Hexulosephosphate synthase from Methylomonas aminofaciens 77a. Purification, properties and kinetics. Biochim Biophys Acta. 1978 Mar 14;523(1):236–244. doi: 10.1016/0005-2744(78)90026-8. [DOI] [PubMed] [Google Scholar]
  31. Kelly D. P. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Annu Rev Microbiol. 1971;25:177–210. doi: 10.1146/annurev.mi.25.100171.001141. [DOI] [PubMed] [Google Scholar]
  32. Kemp M. B. Hexose phosphate synthase from Methylcoccus capsulatus makes D-arabino-3-hexulose phosphate. Biochem J. 1974 Apr;139(1):129–134. doi: 10.1042/bj1390129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kemp M. B., Quayle J. R. Microbial growth on C1 compounds. Incorporation of C1 units into allulose phosphate by extracts of Pseudomonas methanica. Biochem J. 1966 Apr;99(1):41–48. doi: 10.1042/bj0990041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kemp M. B. The hexose phosphate synthetase of Methylococcus capsulatus. Biochem J. 1972 Apr;127(3):64P–65P. doi: 10.1042/bj1270064pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Laing W. A., Christeller J. T. A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J. 1976 Dec 1;159(3):563–570. doi: 10.1042/bj1590563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lawrence A. J., Kemp M. B., Quayle J. R. Synthesis of cell constituents by methane-grown Methylococcus capsulatus and Methanomonas methanooxidans. Biochem J. 1970 Feb;116(4):631–639. doi: 10.1042/bj1160631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  38. MILLER S. L. A production of amino acids under possible primitive earth conditions. Science. 1953 May 15;117(3046):528–529. doi: 10.1126/science.117.3046.528. [DOI] [PubMed] [Google Scholar]
  39. MILLER S. L. The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta. 1957 Mar;23(3):480–489. doi: 10.1016/0006-3002(57)90366-9. [DOI] [PubMed] [Google Scholar]
  40. McFadden B. A. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. Bacteriol Rev. 1973 Sep;37(3):289–319. doi: 10.1128/br.37.3.289-319.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Olson J. M. The evolution of photosynthesis. Science. 1970 Apr 24;168(3930):438–446. doi: 10.1126/science.168.3930.438. [DOI] [PubMed] [Google Scholar]
  42. PONNAMPERUMA C., SAGAN C., MARINER R. SYNTHESIS OF ADENOSINE TRIPHOSPHATE UNDER POSSIBLE PRIMITIVE EARTH CONDITIONS. Nature. 1963 Jul 20;199:222–226. doi: 10.1038/199222a0. [DOI] [PubMed] [Google Scholar]
  43. QUAYLE J. R., KEECH D. B. Carbon assimilation by Pseudomonas oxalaticus (OX 1). 1. Formate and carbon dioxide utilization during growth on formate. Biochem J. 1959 Aug;72:623–630. doi: 10.1042/bj0720623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. QUAYLE J. R., KEECH D. B. Carbon assimilation by Pseudomonas oxalaticus (OX 1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem J. 1959 Aug;72:631–637. doi: 10.1042/bj0720631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Reid C., Orgel L. E. Synthesis in sugars in potentially prebiotic conditions. Nature. 1967 Nov 4;216(5114):455–455. doi: 10.1038/216455a0. [DOI] [PubMed] [Google Scholar]
  46. Ribbons D. W., Harrison J. E., Wadzinski A. M. Metabolism of single carbon compounds. Annu Rev Microbiol. 1970;24:135–158. doi: 10.1146/annurev.mi.24.100170.001031. [DOI] [PubMed] [Google Scholar]
  47. Sahm H., Cox R. B., Quayle J. R. Metabolism of methanol by Rhodopseudomonas acidophila. J Gen Microbiol. 1976 Jun;94(2):313–322. doi: 10.1099/00221287-94-2-313. [DOI] [PubMed] [Google Scholar]
  48. Sahm H., Schütte H., Kula M. R. Purification and properties of 3-hexulosephosphate synthase from Methylomonas M 15. Eur J Biochem. 1976 Jul 15;66(3):591–596. doi: 10.1111/j.1432-1033.1976.tb10586.x. [DOI] [PubMed] [Google Scholar]
  49. Siegel S. M., Giumarro C. On the culture of a microorganism similar to the precambrian microfossil kakabekia umbellata barghoorn in nh(3)-rich atmospheres. Proc Natl Acad Sci U S A. 1966 Feb;55(2):349–353. doi: 10.1073/pnas.55.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sirevåg R., Buchanan B. B., Berry J. A., Troughton J. H. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch Microbiol. 1977 Feb 4;112(1):35–38. doi: 10.1007/BF00446651. [DOI] [PubMed] [Google Scholar]
  51. Smith A. J., Hoare D. S. Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes? Bacteriol Rev. 1977 Jun;41(2):419–448. doi: 10.1128/br.41.2.419-448.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Stokes J. E., Hoare D. S. Reductive pentose cycle and formate assimilation in Rhodopseudomonas palustris. J Bacteriol. 1969 Nov;100(2):890–894. doi: 10.1128/jb.100.2.890-894.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Strom T., Ferenci T., Quayle J. R. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J. 1974 Dec;144(3):465–476. doi: 10.1042/bj1440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Swenson C. A., Barker R. Proportion of keto and aldehydo forms in solutions of sugars and sugar phosphates. Biochemistry. 1971 Aug 3;10(16):3151–3154. doi: 10.1021/bi00792a026. [DOI] [PubMed] [Google Scholar]
  55. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tonge G. M., Harrison D. E., Higgins I. J. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem J. 1977 Feb 1;161(2):333–344. doi: 10.1042/bj1610333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Walker D. A. Regulatory mechanisms in photosynthetic carbon metabolism. Curr Top Cell Regul. 1976;11:203–241. doi: 10.1016/b978-0-12-152811-9.50013-4. [DOI] [PubMed] [Google Scholar]
  58. Wawszkiewicz E. J., Barker H. A. Erythritol metabolism by Propionibacterium pentosaceum. The over-all reaction sequence. J Biol Chem. 1968 Apr 25;243(8):1948–1956. [PubMed] [Google Scholar]
  59. Zeikus J. G. The biology of methanogenic bacteria. Bacteriol Rev. 1977 Jun;41(2):514–541. doi: 10.1128/br.41.2.514-541.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES