Full text
PDF![385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/8a9e678964f8/microrev00002-0139.png)
![386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/bf710f39aab8/microrev00002-0140.png)
![387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/89f46f842ece/microrev00002-0141.png)
![388](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/04b8b1eef975/microrev00002-0142.png)
![389](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/a50e34eeb60c/microrev00002-0143.png)
![390](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/898ed3bc43ec/microrev00002-0144.png)
![391](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/efce76ada721/microrev00002-0145.png)
![392](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/4c8755ce024e/microrev00002-0146.png)
![393](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/fcb8477591a0/microrev00002-0147.png)
![394](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/73fe7d36ea61/microrev00002-0148.png)
![395](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/149b30df5c90/microrev00002-0149.png)
![396](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/a41f8aeda186/microrev00002-0150.png)
![397](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/78216629c0e3/microrev00002-0151.png)
![398](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/10bfdcecd13c/microrev00002-0152.png)
![399](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/4cacdfc91c7b/microrev00002-0153.png)
![400](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/0d8c6e9f02a5/microrev00002-0154.png)
![401](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/4f0fb4fa7742/microrev00002-0155.png)
![402](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/f4ea5715fe13/microrev00002-0156.png)
![403](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/1d31ee511f03/microrev00002-0157.png)
![404](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/c2201114f196/microrev00002-0158.png)
![405](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/41dac7f0f28b/microrev00002-0159.png)
![406](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/8949f22d47ae/microrev00002-0160.png)
![407](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/39c686a0e0c3/microrev00002-0161.png)
![408](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/04374dd29111/microrev00002-0162.png)
![409](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/1e01e94846c2/microrev00002-0163.png)
![410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/51a8b4c426b1/microrev00002-0164.png)
![411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/c7c89b092019/microrev00002-0165.png)
![412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/bafa37c1fb16/microrev00002-0166.png)
![413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a1/281435/8823bea62442/microrev00002-0167.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adhya S., Gottesman M., De Crombrugghe B. Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2534–2538. doi: 10.1073/pnas.71.6.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barksdale L., Arden S. B. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu Rev Microbiol. 1974;28(0):265–299. doi: 10.1146/annurev.mi.28.100174.001405. [DOI] [PubMed] [Google Scholar]
- Bertrand K., Yanofsky C. Regulation of transcription termination in the leader region of the tryptophan operon of Escherichia coli involves tryptophan or its metabolic product. J Mol Biol. 1976 May 15;103(2):339–349. doi: 10.1016/0022-2836(76)90316-8. [DOI] [PubMed] [Google Scholar]
- Bezdek M., Amati P. Evidence for two immunity regulator systems in temperature bacteriophages P22 and L. Virology. 1968 Dec;36(4):701–703. doi: 10.1016/0042-6822(68)90208-0. [DOI] [PubMed] [Google Scholar]
- Blattner F. R., Dahlberg J. E. RNA synthesis startpoints in bacteriophage lambda: are the promoter and operator transcribed? Nat New Biol. 1972 Jun 21;237(77):227–232. doi: 10.1038/newbio237227a0. [DOI] [PubMed] [Google Scholar]
- Botstein D., Chan R. K., Waddell C. H. Genetics of bacteriophage P22. II. Gene order and gene function. Virology. 1972 Jul;49(1):268–282. doi: 10.1016/s0042-6822(72)80028-x. [DOI] [PubMed] [Google Scholar]
- Botstein D., Herskowitz I. Properties of hybrids between Salmonella phage P22 and coliphage lambda. Nature. 1974 Oct 18;251(5476):584–589. doi: 10.1038/251584a0. [DOI] [PubMed] [Google Scholar]
- Botstein D., Levine M. Synthesis and maturation of phage P22 DNA. II. Properties of temperature-sensitive phage mutants defective in DNA metabolism. J Mol Biol. 1968 Jun 28;34(3):643–654. doi: 10.1016/0022-2836(68)90186-1. [DOI] [PubMed] [Google Scholar]
- Botstein D., Matz M. J. A recombination function essential to the growth of bacteriophage P22. J Mol Biol. 1970 Dec 28;54(3):417–440. doi: 10.1016/0022-2836(70)90119-1. [DOI] [PubMed] [Google Scholar]
- Botstein D. Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. J Mol Biol. 1968 Jun 28;34(3):621–641. doi: 10.1016/0022-2836(68)90185-x. [DOI] [PubMed] [Google Scholar]
- Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
- Botstein K., Lew K. K., Jarvik V., Swanson C. A. Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. J Mol Biol. 1975 Feb 5;91(4):439–462. doi: 10.1016/0022-2836(75)90271-5. [DOI] [PubMed] [Google Scholar]
- Bronson M. J., Levine M. Virulent mutants of bacteriophage p22.I. Isolation and genetic analysis. J Virol. 1971 May;7(5):559–568. doi: 10.1128/jvi.7.5.559-568.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bronson M. J., Levine M. Virulent mutants of phage P22. II. Physiological analysis of P22 virB-3 and its component mutations. Virology. 1972 Mar;47(3):644–655. doi: 10.1016/0042-6822(72)90554-5. [DOI] [PubMed] [Google Scholar]
- Casjens S., King J. P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct. 1974;2(2-4):202–224. doi: 10.1002/jss.400020215. [DOI] [PubMed] [Google Scholar]
- Chan R. K., Botstein D. Genetics of bacteriophage P22. I. Isolation of prophage deletions which affect immunity to superinfection. Virology. 1972 Jul;49(1):257–267. doi: 10.1016/s0042-6822(72)80027-8. [DOI] [PubMed] [Google Scholar]
- Chan R. K., Botstein D. Specialized transduction by bacteriophage P22 in Salmonella typhimurium: genetic and physical structure of the transducing genomes and the prophage attachment site. Genetics. 1976 Jul;83(3 PT2):433–458. [PMC free article] [PubMed] [Google Scholar]
- Chan R. K., Botstein D., Watanabe T., Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. doi: 10.1016/0042-6822(72)90442-4. [DOI] [PubMed] [Google Scholar]
- Chelala C. A., Margolin P. Effects of deletions on cotransduction linkage in Salmonella typhimurium: evidence that bacterial chromosome deletions affect the formation of transducing DNA fragments. Mol Gen Genet. 1974;131(2):97–112. doi: 10.1007/BF00266146. [DOI] [PubMed] [Google Scholar]
- Cowie D. B., Szafranski P. Thermal chromatography of DNA-DNA reactions. Biophys J. 1967 Sep;7(5):567–584. doi: 10.1016/S0006-3495(67)86607-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBNAU E., STOCKER B. A. GENETICS OF PLASMIDS IN SALMONELLA TYPHIMURIUM. Nature. 1964 Dec 12;204:1112–1113. doi: 10.1038/2041112a0. [DOI] [PubMed] [Google Scholar]
- Dopatka H. D., Prell H. H. Amber mutants of Salmonella-phage P22 in genes engaged in the establishment of lysogeny. Mol Gen Genet. 1973 Jan 24;120(2):157–170. doi: 10.1007/BF00267244. [DOI] [PubMed] [Google Scholar]
- Earnshaw W., Casjens S., Harrison S. C. Assembly of the head of bacteriophage P22: x-ray diffraction from heads, proheads and related structures. J Mol Biol. 1976 Jun 25;104(2):387–410. doi: 10.1016/0022-2836(76)90278-3. [DOI] [PubMed] [Google Scholar]
- Ebel-Tsipis J., Botstein D., Fox M. S. Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):433–448. doi: 10.1016/0022-2836(72)90361-0. [DOI] [PubMed] [Google Scholar]
- Ebel-Tsipis J., Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. 1. Exclusion of generalized transducing particles. Virology. 1971 Sep;45(3):629–637. doi: 10.1016/0042-6822(71)90177-2. [DOI] [PubMed] [Google Scholar]
- Ebel-Tsipis J., Fox M. S., Botstein D. Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):449–469. doi: 10.1016/0022-2836(72)90362-2. [DOI] [PubMed] [Google Scholar]
- Echols H. Developmental pathways for the temperate phage: lysis vs lysogeny,. Annu Rev Genet. 1972;6(0):157–190. doi: 10.1146/annurev.ge.06.120172.001105. [DOI] [PubMed] [Google Scholar]
- Enomoto M. Composition of chromosome fragments participating in phage P22-mediated transduction of Salmonella typhimurium. Virology. 1967 Nov;33(3):474–482. doi: 10.1016/0042-6822(67)90123-7. [DOI] [PubMed] [Google Scholar]
- FUKAZAWA Y., HARTMAN P. E. A P22 BACTERIOPHAGE MUTANT DEFECTIVE IN ANTIGEN CONVERSION. Virology. 1964 Jun;23:279–283. doi: 10.1016/0042-6822(64)90296-x. [DOI] [PubMed] [Google Scholar]
- Feiss M., Fisher R. A., Crayton M. A., Egner C. Packaging of the bacteriophage lambda chromosome: effect of chromosome length. Virology. 1977 Mar;77(1):281–293. doi: 10.1016/0042-6822(77)90425-1. [DOI] [PubMed] [Google Scholar]
- Franklin N. C. Altered reading of genetic signals fused to the N operon of bacteriophage lambda: genetic evidence for modification of polymerase by the protein product of the N gene. J Mol Biol. 1974 Oct 15;89(1):33–48. doi: 10.1016/0022-2836(74)90161-2. [DOI] [PubMed] [Google Scholar]
- Friedman D. I., Ponce-Campos R. Differential effect of phage regulator functions on transcription from various promoters: evidence that the P22 gene 24 and the lambda gene N products distinguish three classes of promoters. J Mol Biol. 1975 Nov 5;98(3):537–549. doi: 10.1016/s0022-2836(75)80085-4. [DOI] [PubMed] [Google Scholar]
- Gemski P., Jr, Baron L. S., Yamamoto N. Formation of hybrids between coliphage lambda and Salmonella phage P22 with a Salmonella typhimurium hybrid sensitive to these phages. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3110–3114. doi: 10.1073/pnas.69.11.3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert W., Dressler D. DNA replication: the rolling circle model. Cold Spring Harb Symp Quant Biol. 1968;33:473–484. doi: 10.1101/sqb.1968.033.01.055. [DOI] [PubMed] [Google Scholar]
- Gottesman M. M., Gottesman M. E., Gottesman S., Gellert M. Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J Mol Biol. 1974 Sep 15;88(2):471–487. doi: 10.1016/0022-2836(74)90496-3. [DOI] [PubMed] [Google Scholar]
- Gough M., Levine M. The circularity of the phage P22 linkage map. Genetics. 1968 Feb;58(2):161–169. doi: 10.1093/genetics/58.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gough M., Scott J. V. Location of the prophage conversion gene of P22. Virology. 1972 Nov;50(2):603–605. doi: 10.1016/0042-6822(72)90411-4. [DOI] [PubMed] [Google Scholar]
- Gough M. Second locus of bacteriophage P22 necessary for the maintenance of lysogeny. J Virol. 1968 Oct;2(10):992–998. doi: 10.1128/jvi.2.10.992-998.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gough M., Tokuno S. Further structural and functional analogies between the repressor regions of phages P22 and lambda. Mol Gen Genet. 1975;138(1):71–79. doi: 10.1007/BF00268829. [DOI] [PubMed] [Google Scholar]
- Herskowitz I. Control of gene expression in bacteriophage lambda. Annu Rev Genet. 1973;7:289–324. doi: 10.1146/annurev.ge.07.120173.001445. [DOI] [PubMed] [Google Scholar]
- Herskowitz I., Signer E. R. A site essential for expression of all late genes in bacteriophage lambda. J Mol Biol. 1970 Feb 14;47(3):545–556. doi: 10.1016/0022-2836(70)90321-9. [DOI] [PubMed] [Google Scholar]
- Herskowitz I., Signer E. R. Substitution mutation in bacteriophage lambda with new specificity for late gene expression. Virology. 1974 Sep;61(1):112–119. doi: 10.1016/0042-6822(74)90246-3. [DOI] [PubMed] [Google Scholar]
- Hilliker S., Botstein D. An early regulatory gene of Salmonella phage P22 analogous to gene N of coliphage lambda. Virology. 1975 Dec;68(2):510–524. doi: 10.1016/0042-6822(75)90291-3. [DOI] [PubMed] [Google Scholar]
- Hilliker S., Botstein D. Specificity of genetic elements controlling regulation of early functions in temperate bacteriophages. J Mol Biol. 1976 Sep 25;106(3):537–566. doi: 10.1016/0022-2836(76)90251-5. [DOI] [PubMed] [Google Scholar]
- Hoffman B., Levine M. Bacteriophage P22 virion protein which performs an essential early function. I. Analysis of 16-ts mutants. J Virol. 1975 Dec;16(6):1536–1546. doi: 10.1128/jvi.16.6.1536-1546.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman B., Levine M. Bacteriophage P22 virion protein which performs an essential early function. II. Characterization of the gene 16 function. J Virol. 1975 Dec;16(6):1547–1559. doi: 10.1128/jvi.16.6.1547-1559.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong J. S., Smith G. R., Ames B. N. Adenosine 3':5'-cyclic monophosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2258–2262. doi: 10.1073/pnas.68.9.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honigman A., Oppenheim A., Oppenheim A. B. A pleiotropic regulatory mutation in lambda bacteriophage. Mol Gen Genet. 1975;138(2):85–111. doi: 10.1007/BF02428115. [DOI] [PubMed] [Google Scholar]
- Hoppe I., Roth J. Specialized transducing phages derived from salmonella phage P22. Genetics. 1974 Apr;76(4):633–654. doi: 10.1093/genetics/76.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Israel J. V., Anderson T. F., Levine M. in vitro MORPHOGENESIS OF PHAGE P22 FROM HEADS AND BASE-PLATE PARTS. Proc Natl Acad Sci U S A. 1967 Feb;57(2):284–291. doi: 10.1073/pnas.57.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Israel V. E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. J Virol. 1977 Jul;23(1):91–97. doi: 10.1128/jvi.23.1.91-97.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Israel V., Rosen H., Levine M. Binding of bacteriophage P22 tail parts to cells. J Virol. 1972 Dec;10(6):1152–1158. doi: 10.1128/jvi.10.6.1152-1158.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwashita S., Kanegasaki S. Smooth specific phage adsorption: endorhamnosidase activity of tail parts of P22. Biochem Biophys Res Commun. 1973 Nov 16;55(2):403–409. doi: 10.1016/0006-291x(73)91101-7. [DOI] [PubMed] [Google Scholar]
- Jackson E. N., Jackson D. A., Deans R. J. EcoRI analysis of bacteriophage P22 DNA packaging. J Mol Biol. 1978 Jan 25;118(3):365–388. doi: 10.1016/0022-2836(78)90234-6. [DOI] [PubMed] [Google Scholar]
- Jackson E. N., Miller H. I., Adams M. L. EcoRI restriction endonuclease cleavage site map of bacteriophage P22DNA. J Mol Biol. 1978 Jan 25;118(3):347–363. doi: 10.1016/0022-2836(78)90233-4. [DOI] [PubMed] [Google Scholar]
- Jarvik J., Botstein D. A genetic method for determining the order of events in a biological pathway. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2046–2050. doi: 10.1073/pnas.70.7.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvik J., Botstein D. Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2738–2742. doi: 10.1073/pnas.72.7.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jessop A. P. A specialised transducing phage of P22 for which the ability to form plagues is associated with transduction of the proAB region. Mol Gen Genet. 1972;114(3):214–222. doi: 10.1007/BF01788890. [DOI] [PubMed] [Google Scholar]
- Jessop A. P. Specialized transducing phages derived from phage P22 that carry the pro AB region of the host, Salmonella typhimurium: genetic evidence for their structure and mode of transduction. Genetics. 1976 Jul;83(3 PT2):459–475. [PMC free article] [PubMed] [Google Scholar]
- KAISER A. D. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. doi: 10.1016/0042-6822(57)90022-3. [DOI] [PubMed] [Google Scholar]
- Kaiser D., Masuda T. In vitro assembly of bacteriophage Lambda heads. Proc Natl Acad Sci U S A. 1973 Jan;70(1):260–264. doi: 10.1073/pnas.70.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaye R., Barravecchio J., Roth J. Isolation of P22 specialized transducing phage followong F'-episome fusion. Genetics. 1974 Apr;76(4):655–667. doi: 10.1093/genetics/76.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemper J. Gene order and co-transduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map. J Bacteriol. 1974 Jan;117(1):94–99. doi: 10.1128/jb.117.1.94-99.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King J., Casjens S. Catalytic head assembling protein in virus morphogenesis. Nature. 1974 Sep 13;251(5471):112–119. doi: 10.1038/251112a0. [DOI] [PubMed] [Google Scholar]
- King J., Lenk E. V., Botstein D. Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol. 1973 Nov 15;80(4):697–731. doi: 10.1016/0022-2836(73)90205-2. [DOI] [PubMed] [Google Scholar]
- Kleckner N., Chan R. K., Tye B. K., Botstein D. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J Mol Biol. 1975 Oct 5;97(4):561–575. doi: 10.1016/s0022-2836(75)80059-3. [DOI] [PubMed] [Google Scholar]
- Kleckner N. Translocatable elements in procaryotes. Cell. 1977 May;11(1):11–23. doi: 10.1016/0092-8674(77)90313-0. [DOI] [PubMed] [Google Scholar]
- LEVINE M., CURTISS R. Genetic fine structure of the C region and the linkage map of phage P22. Genetics. 1961 Dec;46:1573–1580. doi: 10.1093/genetics/46.12.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVINE M. Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology. 1957 Feb;3(1):22–41. doi: 10.1016/0042-6822(57)90021-1. [DOI] [PubMed] [Google Scholar]
- LEVINE M., SMITH H. O. SEQUENTIAL GENE ACTION IN THE ESTABLISHMENT OF LYSOGENY. Science. 1964 Dec 18;146(3651):1581–1582. doi: 10.1126/science.146.3651.1581. [DOI] [PubMed] [Google Scholar]
- Lee F., Squires C. L., Squires C., Yanofsky C. Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region. J Mol Biol. 1976 May 15;103(2):383–393. doi: 10.1016/0022-2836(76)90318-1. [DOI] [PubMed] [Google Scholar]
- Levine M., Schott C. Mutations of phage P22 affecting phage DNA synthesis and lysogenization. J Mol Biol. 1971 Nov 28;62(1):53–64. doi: 10.1016/0022-2836(71)90130-6. [DOI] [PubMed] [Google Scholar]
- Levine M., Truesdell S., Ramakrishnan T., Bronson M. J. Dual control of lysogeny by bacteriophage P22: an antirepressor locus and its controlling elements. J Mol Biol. 1975 Feb 5;91(4):421–438. doi: 10.1016/0022-2836(75)90270-3. [DOI] [PubMed] [Google Scholar]
- Lew K., Casjens S. Identification of early proteins coded by bacteriophage P22. Virology. 1975 Dec;68(2):525–533. doi: 10.1016/0042-6822(75)90292-5. [DOI] [PubMed] [Google Scholar]
- Oppenheim A. Suppression of a Pm mutant by the sar mutation for the synthesis of repressor by bacteriophage lambda. J Mol Biol. 1977 Mar 25;111(1):83–89. doi: 10.1016/s0022-2836(77)80134-4. [DOI] [PubMed] [Google Scholar]
- Ozeki H. Chromosome Fragments Participating in Transduction in Salmonella Typhimurium. Genetics. 1959 May;44(3):457–470. doi: 10.1093/genetics/44.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce U., Stocker B. A. Variation in composition of chromosome fragments transduced by phage P22. Virology. 1965 Nov;27(3):290–296. doi: 10.1016/0042-6822(65)90108-x. [DOI] [PubMed] [Google Scholar]
- Pipas J. M., Reeves R. H. Patterns of transcription in bacteriophage P22-infected Salmonella typhimurium. J Virol. 1977 Feb;21(2):825–828. doi: 10.1128/jvi.21.2.825-828.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poteete A. R., King J. Functions of two new genes in Salmonella phage P22 assembly. Virology. 1977 Feb;76(2):725–739. doi: 10.1016/0042-6822(77)90254-9. [DOI] [PubMed] [Google Scholar]
- Radding C. M., Szpirer J., Thomas R. THE STRUCTURAL GENE FOR lambda EXONUCLEASE. Proc Natl Acad Sci U S A. 1967 Feb;57(2):277–283. doi: 10.1073/pnas.57.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raj A. S., Raj A. Y., Schmieger H. Phage genes involved in the formation generalized transducing particles in Salmonella--Phage P22. Mol Gen Genet. 1974;135(2):175–184. doi: 10.1007/BF00264784. [DOI] [PubMed] [Google Scholar]
- Rao G. R., Burma D. P. Purification and properties of phage P22-induced lysozyme. J Biol Chem. 1971 Nov;246(21):6474–6479. [PubMed] [Google Scholar]
- Rao R. N. Bacteriophage P22 controlled exclusion in Salmonella typhimurium. J Mol Biol. 1968 Aug 14;35(3):607–622. doi: 10.1016/s0022-2836(68)80017-8. [DOI] [PubMed] [Google Scholar]
- Rao R. N., Smith H. O. Phage P22 lysogens of a Salmonella typhimurium mutant deleted at the normal prophage attachment site. Virology. 1968 Oct;36(2):328–330. doi: 10.1016/0042-6822(68)90157-8. [DOI] [PubMed] [Google Scholar]
- Reichardt L., Kaiser A. D. Control of lambda repressor synthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2185–2189. doi: 10.1073/pnas.68.9.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhoades M., MacHattie L. A., Thomas C. A., Jr The P22 bacteriophage DNA molecule. I. The mature form. J Mol Biol. 1968 Oct 14;37(1):21–40. doi: 10.1016/0022-2836(68)90071-5. [DOI] [PubMed] [Google Scholar]
- Rhoades M., Thomas C. A., Jr The P22 bacteriophage DNA molecule. II. Circular intracellular forms. J Mol Biol. 1968 Oct 14;37(1):41–61. doi: 10.1016/0022-2836(68)90072-7. [DOI] [PubMed] [Google Scholar]
- Roberts J. W., Roberts C. W. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc Natl Acad Sci U S A. 1975 Jan;72(1):147–151. doi: 10.1073/pnas.72.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts J. W. Transcription termination and late control in phage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3300–3304. doi: 10.1073/pnas.72.9.3300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J. R., Hartman P. E. Heterogeneity in P22 transducing particles. Virology. 1965 Nov;27(3):297–307. doi: 10.1016/0042-6822(65)90109-1. [DOI] [PubMed] [Google Scholar]
- SMITH H. O., LEVINE M. TWO SEQUENTIAL REPRESSIONS OF DNA SYNTHESIS IN THE ESTABLISHMENT OF LYSOGENY BY PHAGE P22 AND ITS MUTANTS. Proc Natl Acad Sci U S A. 1964 Aug;52:356–363. doi: 10.1073/pnas.52.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOCKER B. A. Transduction of flagellar characters in Salmonella. J Gen Microbiol. 1953 Dec;9(3):410–433. doi: 10.1099/00221287-9-3-410. [DOI] [PubMed] [Google Scholar]
- STREISINGER G., EDGAR R. S., DENHARDT G. H. CHROMOSOME STRUCTURE IN PHAGE T4. I. CIRCULARITY OF THE LINKAGE MAP. Proc Natl Acad Sci U S A. 1964 May;51:775–779. doi: 10.1073/pnas.51.5.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmieger H., Backhaus H. Altered cotransduction frequencies exhibited by HT-mutants of Salmonella-phage P22. Mol Gen Genet. 1976 Feb 2;143(3):307–309. doi: 10.1007/BF00269408. [DOI] [PubMed] [Google Scholar]
- Schmieger H. The molecular structure of the transducing particles of Salmonella phage P22. II. Density gradient analysis of DNA. Mol Gen Genet. 1970;109(4):323–337. doi: 10.1007/BF00267702. [DOI] [PubMed] [Google Scholar]
- Schumann W., Lindenblatt E., Bade E. G. Bacteriophage-specific DNA-binding proteins in P22-lysogenic and in P22-infected Salmonella typhimurium. J Virol. 1976 Oct;20(1):334–338. doi: 10.1128/jvi.20.1.334-338.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skalka S. A., Hanson P. Comparisons of the distribution of nucleotides and common sequences in deoxyribonucleic acid from selected bacteriophages. J Virol. 1972 Apr;9(4):583–593. doi: 10.1128/jvi.9.4.583-593.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith-Keary P. F. Restricted trandsuction by bacteriophage P22 in Salmonella typhimurium. Genet Res. 1966 Aug;8(1):73–82. doi: 10.1017/s0016672300009927. [DOI] [PubMed] [Google Scholar]
- Smith H. O. Defective phage formation by lysogens of integration deficient phage P22 mutants. Virology. 1968 Feb;34(2):203–223. doi: 10.1016/0042-6822(68)90231-6. [DOI] [PubMed] [Google Scholar]
- Smith H. O., Levine M. A phage P22 gene controlling integration of prophage. Virology. 1967 Feb;31(2):207–216. doi: 10.1016/0042-6822(67)90164-x. [DOI] [PubMed] [Google Scholar]
- Smith H. O., Levine M. Gene order in prophage P22. Virology. 1965 Oct;27(2):229–231. doi: 10.1016/0042-6822(65)90166-2. [DOI] [PubMed] [Google Scholar]
- Streisinger G., Emrich J., Stahl M. M. Chromosome structure in phage t4, iii. Terminal redundancy and length determination. Proc Natl Acad Sci U S A. 1967 Feb;57(2):292–295. doi: 10.1073/pnas.57.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Susskind M. M., Botstein D. Mechanism of action of Salmonella phage P22 antirepressor. J Mol Biol. 1975 Oct 25;98(2):413–424. doi: 10.1016/s0022-2836(75)80127-6. [DOI] [PubMed] [Google Scholar]
- Susskind M. M., Botstein D., Wright A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology. 1974 Dec;62(2):350–366. doi: 10.1016/0042-6822(74)90398-5. [DOI] [PubMed] [Google Scholar]
- Susskind M. M., Wright A., Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology. 1971 Sep;45(3):638–652. doi: 10.1016/0042-6822(71)90178-4. [DOI] [PubMed] [Google Scholar]
- Susskind M. M., Wright A., Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. IV. Genetics and physiology of sieB exclusion. Virology. 1974 Dec;62(2):367–384. doi: 10.1016/0042-6822(74)90399-7. [DOI] [PubMed] [Google Scholar]
- Szpirer J., Thomas R., Radding C. M. Hybrids of bacteriophages lambda and phi 80: a study of nonvegetative functions. Virology. 1969 Apr;37(4):585–596. doi: 10.1016/0042-6822(69)90276-1. [DOI] [PubMed] [Google Scholar]
- Séchaud J., Streisinger G., Emrich J., Newton J., Lanford H., Reinhold H., Stahl M. M. Chromosome structure in phage T4, II. Terminal redundancy and heterozygosis. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1333–1339. doi: 10.1073/pnas.54.5.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A. Endopeptidase activity of phage lamba-endolysin. Nat New Biol. 1971 Dec 1;234(48):144–145. doi: 10.1038/newbio234144a0. [DOI] [PubMed] [Google Scholar]
- Tokuno S. I., Goldschmidt E. P., Gough M. Mutant of Salmonella typhimurium that channels infecting bacteriophage P22 toward lysogenization. J Bacteriol. 1974 Aug;119(2):508–513. doi: 10.1128/jb.119.2.508-513.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuno S. I., Gough M. Regulation of Bacteriophage P22 DNA synthesis and repressor levels in P22cly infections. J Virol. 1977 Mar;21(3):956–964. doi: 10.1128/jvi.21.3.956-964.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuno S., Gough M. Site c27 in phage P22 and control of the pathway to lysogeny. Mol Gen Genet. 1976 Mar 22;144(2):199–204. doi: 10.1007/BF02428109. [DOI] [PubMed] [Google Scholar]
- Tye B. K. A mutant of phage P22 with randomly permuted DNA. J Mol Biol. 1976 Jan 25;100(3):421–426. doi: 10.1016/s0022-2836(76)80073-3. [DOI] [PubMed] [Google Scholar]
- Tye B. K., Chan R. K., Botstein D. Packaging of an oversize transducing genome by Salmonella phage P22. J Mol Biol. 1974 Jan 5;85(4):485–500. doi: 10.1016/0022-2836(74)90311-8. [DOI] [PubMed] [Google Scholar]
- Tye B. K., Huberman J. A., Botstein D. Non-random circular permutation of phage P22 DNA. J Mol Biol. 1974 Jan 5;85(4):501–528. doi: 10.1016/0022-2836(74)90312-x. [DOI] [PubMed] [Google Scholar]
- Walsh J., Meynell G. G. The isolation of non-excluding mutants of phage P22. J Gen Virol. 1967 Oct;1(4):581–582. doi: 10.1099/0022-1317-1-4-581. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Ogata Y., Chan R. K., Botstein D. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology. 1972 Dec;50(3):874–882. doi: 10.1016/0042-6822(72)90441-2. [DOI] [PubMed] [Google Scholar]
- Weaver S., Levine M. Recombinational circularization of Salmonella phage P22 DNA. Virology. 1977 Jan;76(1):29–38. doi: 10.1016/0042-6822(77)90278-1. [DOI] [PubMed] [Google Scholar]
- Weaver S., Levine M. Replication in situ and DNA encapsulation following induction of an excision-defective lysogen of Salmonella bacteriophage P22. J Mol Biol. 1978 Jan 25;118(3):389–411. doi: 10.1016/0022-2836(78)90235-8. [DOI] [PubMed] [Google Scholar]
- Weaver S., Levine M. The timing of erf-mediated recombination in replication, lysogenization, and the formation of recombinant progeny by Salmonella phage P22. Virology. 1977 Jan;76(1):19–28. doi: 10.1016/0042-6822(77)90277-x. [DOI] [PubMed] [Google Scholar]
- Weil J., Cunningham R., Martin R., 3rd, Mitchell E., Bolling B. Characteristics of lambda p4, a lambda derivative containing 9 per cent excess DNA. Virology. 1972 Nov;50(2):373–380. doi: 10.1016/0042-6822(72)90388-1. [DOI] [PubMed] [Google Scholar]
- Westmoreland B. C., Szybalski W., Ris H. Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy. Science. 1969 Mar 21;163(3873):1343–1348. doi: 10.1126/science.163.3873.1343. [DOI] [PubMed] [Google Scholar]
- Wilgus G. S., Mural R. J., Friedman D. I., Fiandt M., Szybalski W. Lambda imm lambda-434: a phage with a hybrid immunity region. Virology. 1973 Nov;56(1):46–53. doi: 10.1016/0042-6822(73)90286-9. [DOI] [PubMed] [Google Scholar]
- Wing J. P. Integration and induction of phage P22 in a recombination-deficient mutant of Salmonella typhimurium. J Virol. 1968 Jul;2(7):702–709. doi: 10.1128/jvi.2.7.702-709.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright A., Kanegasaki S. Molecular aspects of lipopolysaccharides. Physiol Rev. 1971 Oct;51(4):748–784. doi: 10.1152/physrev.1971.51.4.748. [DOI] [PubMed] [Google Scholar]
- Yamagami H., Yamamoto N. Contribution of the bacterial recombination function to replication of bacteriophage P2. J Mol Biol. 1970 Oct 28;53(2):281–285. doi: 10.1016/0022-2836(70)90300-1. [DOI] [PubMed] [Google Scholar]
- ZINDER N. D. Bacterial transduction. J Cell Physiol Suppl. 1955 May;45(Suppl 2):23–49. doi: 10.1002/jcp.1030450504. [DOI] [PubMed] [Google Scholar]
- ZINDER N. D., LEDERBERG J. Genetic exchange in Salmonella. J Bacteriol. 1952 Nov;64(5):679–699. doi: 10.1128/jb.64.5.679-699.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZINDER N. D. Lysogenization and superinfection immunity in Salmonella. Virology. 1958 Apr;5(2):291–326. doi: 10.1016/0042-6822(58)90025-4. [DOI] [PubMed] [Google Scholar]