Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1981 Mar;45(1):180–209. doi: 10.1128/mr.45.1.180-209.1981

Microbial degradation of petroleum hydrocarbons: an environmental perspective.

R M Atlas
PMCID: PMC281502  PMID: 7012571

Full text

PDF
180

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. J., Gledhill W. E. The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms. Adv Appl Microbiol. 1971;14:249–388. doi: 10.1016/s0065-2164(08)70546-x. [DOI] [PubMed] [Google Scholar]
  2. Atlas R. M., Bartha R. Biodegradation of petroleum in seawater at low temperatures. Can J Microbiol. 1972 Dec;18(12):1851–1855. doi: 10.1139/m72-289. [DOI] [PubMed] [Google Scholar]
  3. Atlas R. M., Bartha R. Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng. 1972 May;14(3):297–308. doi: 10.1002/bit.260140303. [DOI] [PubMed] [Google Scholar]
  4. Atlas R. M., Bartha R. Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng. 1972 May;14(3):309–318. doi: 10.1002/bit.260140304. [DOI] [PubMed] [Google Scholar]
  5. Atlas R. M., Bartha R. Fate and effects of polluting petroleum in the marine environment. Residue Rev. 1973;49(0):49–85. doi: 10.1007/978-1-4613-9377-1_2. [DOI] [PubMed] [Google Scholar]
  6. Atlas R. M., Bartha R. Inhibition by fatty acids of the biodegradation of petroleum. Antonie Van Leeuwenhoek. 1973;39(2):257–271. doi: 10.1007/BF02578858. [DOI] [PubMed] [Google Scholar]
  7. Atlas R. M. Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol. 1975 Sep;30(3):396–403. doi: 10.1128/am.30.3.396-403.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Austin B., Calomiris J. J., Walker J. D., Colwell R. R. Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl Environ Microbiol. 1977 Jul;34(1):60–68. doi: 10.1128/aem.34.1.60-68.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bailey C. A., May M. E. Evaluation of microbiological test kits for hydrocarbon fuel systems. Appl Environ Microbiol. 1979 May;37(5):871–877. doi: 10.1128/aem.37.5.871-877.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Barnsley E. A. The bacterial degradation of fluoranthene and benzo[alpyrene. Can J Microbiol. 1975 Jul;21(7):1004–1008. doi: 10.1139/m75-148. [DOI] [PubMed] [Google Scholar]
  11. Bartha R. The microbiology of aquatic oil spills. Adv Appl Microbiol. 1977;22:225–266. doi: 10.1016/s0065-2164(08)70164-3. [DOI] [PubMed] [Google Scholar]
  12. Beam H. W., Perry J. J. Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons. Arch Mikrobiol. 1973 Apr 8;91(1):87–90. doi: 10.1007/BF00409542. [DOI] [PubMed] [Google Scholar]
  13. Beam H. W., Perry J. J. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol. 1974 May;118(2):394–399. doi: 10.1128/jb.118.2.394-399.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Blumer M., Sass J. Oil pollution: persistence and degradation of spilled fuel oil. Science. 1972 Jun 9;176(4039):1120–1122. doi: 10.1126/science.176.4039.1120. [DOI] [PubMed] [Google Scholar]
  15. Boylan D. B., Tripp B. W. Determination of hydrocarbons in seawater extracts of crude oil and crude oil fractions. Nature. 1971 Mar 5;230(5288):44–47. doi: 10.1038/230044a0. [DOI] [PubMed] [Google Scholar]
  16. Buckley E. N., Jonas R. B., Pfaender F. K. Characterization of microbial isolates from an estuarine ecosystem: relationship of hydrocarbon utilization to ambient hydrocarbon concentrations. Appl Environ Microbiol. 1976 Aug;32(2):232–237. doi: 10.1128/aem.32.2.232-237.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Button M. Proceedings: Ultrastructure of sheep sweat glands in dilated and contracted states. J Anat. 1973 Dec;116(Pt 3):479–479. [PubMed] [Google Scholar]
  18. Calomiris J. J., Austin B., Walker J. D., Colwell R. R. Enrichment for estuarine petroleum-degrading bacteria using liquid and solid media. J Appl Bacteriol. 1977 Feb;42(1):135–144. doi: 10.1111/j.1365-2672.1977.tb00677.x. [DOI] [PubMed] [Google Scholar]
  19. Cantwell S. G., Lau E. P., Watt D. S., Fall R. R. Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol. 1978 Aug;135(2):324–333. doi: 10.1128/jb.135.2.324-333.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cerniglia C. E., Gibson D. T. Fungal oxidation of (+/-)-9,10-dihydroxy-9,10-dihydrobenzo[a]pyrene: formation of diastereomeric benzo[a]pyrene 9,10-diol 7,8-epoxides. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4554–4558. doi: 10.1073/pnas.77.8.4554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cerniglia C. E., Gibson D. T. Fungal oxidation of benzo[a]pyrene and (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Evidence for the formation of a benzo[a]pyrene 7,8-diol-9,10-epoxide. J Biol Chem. 1980 Jun 10;255(11):5159–5163. [PubMed] [Google Scholar]
  22. Cerniglia C. E., Gibson D. T. Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol. 1977 Oct;34(4):363–370. doi: 10.1128/aem.34.4.363-370.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cerniglia C. E., Gibson D. T. Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch Biochem Biophys. 1978 Feb;186(1):121–127. doi: 10.1016/0003-9861(78)90471-x. [DOI] [PubMed] [Google Scholar]
  24. Cerniglia C. E., Gibson D. T., Van Baalen C. Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun. 1979 May 14;88(1):50–58. doi: 10.1016/0006-291x(79)91695-4. [DOI] [PubMed] [Google Scholar]
  25. Cerniglia C. E., Hebert R. L., Szaniszlo P. J., Gibson D. T. Fungal transformation of naphthalene. Arch Microbiol. 1978 May 30;117(2):135–143. doi: 10.1007/BF00402301. [DOI] [PubMed] [Google Scholar]
  26. Cerniglia C. E., Perry J. J. Crude oil degradation by microorganisms isolated from the marine environment. Z Allg Mikrobiol. 1973;13(4):299–306. doi: 10.1002/jobm.3630130403. [DOI] [PubMed] [Google Scholar]
  27. Chakrabarty A. M., Chou G., Gunsalus I. C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1137–1140. doi: 10.1073/pnas.70.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chakrabarty A. M. Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol. 1972 Nov;112(2):815–823. doi: 10.1128/jb.112.2.815-823.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Colwell R. R. Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol. 1977 Sep;5(4):423–445. doi: 10.3109/10408417709102813. [DOI] [PubMed] [Google Scholar]
  30. Cooney J. J., Edmonds P., Brenner Q. M. Growth and survival of fuel isolates in hydrocarbon-fuel emulsions. Appl Microbiol. 1968 Apr;16(4):569–571. doi: 10.1128/am.16.4.569-571.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Davies J. S., Westlake D. W. Crude oil utilization by fungi. Can J Microbiol. 1979 Feb;25(2):146–156. doi: 10.1139/m79-023. [DOI] [PubMed] [Google Scholar]
  32. Dibble J. T., Bartha R. Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol. 1979 Apr;37(4):729–739. doi: 10.1128/aem.37.4.729-739.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Dibble J. T., Bartha R. Effect of iron on the biodegradation of petroleum in seawater. Appl Environ Microbiol. 1976 Apr;31(4):544–550. doi: 10.1128/aem.31.4.544-550.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Dunn N. W., Gunsalus I. C. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol. 1973 Jun;114(3):974–979. doi: 10.1128/jb.114.3.974-979.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
  36. Fall R. R., Brown J. L., Schaeffer T. L. Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol. 1979 Oct;38(4):715–722. doi: 10.1128/aem.38.4.715-722.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ferris J. P., MacDonald L. H., Patrie M. A., Martin M. A. Aryl hydrocarbon hydroxylase activity in the fungus Cunninghamella bainieri: evidence for the presence of cytochrome P-450. Arch Biochem Biophys. 1976 Aug;175(2):443–452. doi: 10.1016/0003-9861(76)90532-4. [DOI] [PubMed] [Google Scholar]
  38. Gibbs C. F., Pugh K. B., Andrews A. R. Quantitative studies on marine biodegradation of oil. II. Effect of temperature. Proc R Soc Lond B Biol Sci. 1975 Jan 21;188(1090):83–94. doi: 10.1098/rspb.1975.0004. [DOI] [PubMed] [Google Scholar]
  39. Gibbs C. F. Quantitative studies on marine biodegradation of oil. I. Nutrient limitation at 14 degrees C. Proc R Soc Lond B Biol Sci. 1975 Jan 21;188(1090):61–82. doi: 10.1098/rspb.1975.0003. [DOI] [PubMed] [Google Scholar]
  40. Gibson D. T., Mahadevan V., Jerina D. M., Yogi H., Yeh H. J. Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science. 1975 Jul 25;189(4199):295–297. doi: 10.1126/science.1145203. [DOI] [PubMed] [Google Scholar]
  41. Gibson D. T. Microbial degradation of aromatic compounds. Science. 1967 Sep 13;161(3846):1093–1097. [PubMed] [Google Scholar]
  42. Gutnick D. L., Rosenberg E. Oil tankers and pollution: a microbiological approach. Annu Rev Microbiol. 1977;31:379–396. doi: 10.1146/annurev.mi.31.100177.002115. [DOI] [PubMed] [Google Scholar]
  43. Haines J. R., Alexander M. Microbial degradation of high-molecular-weight alkanes. Appl Microbiol. 1974 Dec;28(6):1084–1085. doi: 10.1128/am.28.6.1084-1085.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hambrick G. A., Delaune R. D., Patrick W. H. Effect of Estuarine Sediment pH and Oxidation-Reduction Potential on Microbial Hydrocarbon Degradation. Appl Environ Microbiol. 1980 Aug;40(2):365–369. doi: 10.1128/aem.40.2.365-369.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Herbes S. E., Schwall L. R. Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol. 1978 Feb;35(2):306–316. doi: 10.1128/aem.35.2.306-316.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Horowitz A., Atlas R. M. Continuous open flow-through system as a model for oil degradation in the arctic ocean. Appl Environ Microbiol. 1977 Mar;33(3):647–653. doi: 10.1128/aem.33.3.647-653.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Horowitz A., Atlas R. M. Response of microorganisms to an accidental gasoline spillage in an arctic freshwater ecosystem. Appl Environ Microbiol. 1977 Jun;33(6):1252–1258. doi: 10.1128/aem.33.6.1252-1258.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Horowitz A., Gutnick D., Rosenberg E. Sequential growth of bacteria on crude oil. Appl Microbiol. 1975 Jul;30(1):10–19. doi: 10.1128/am.30.1.10-19.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Iizuka H., Iida M., Fujita S. Formation of n-decene-1 from n-decane by resting cells of Candida rugosa. Z Allg Mikrobiol. 1969;9(3):223–226. [PubMed] [Google Scholar]
  51. Jannasch H. W., Eimhjellen K., Wirsen C. O., Farmanfarmaian A. Microbial degradation of organic matter in the deep sea. Science. 1971 Feb 19;171(3972):672–675. doi: 10.1126/science.171.3972.672. [DOI] [PubMed] [Google Scholar]
  52. Jobson A., Cook F. D., Westlake D. W. Microbial utilization of crude oil. Appl Microbiol. 1972 Jun;23(6):1082–1089. doi: 10.1128/am.23.6.1082-1089.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Jobson A., McLaughlin M., Cook F. D., Westlake D. W. Effect of amendments on the microbial utilization of oil applied to soil. Appl Microbiol. 1974 Jan;27(1):166–171. doi: 10.1128/am.27.1.166-171.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. King D. H., Perry J. J. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae. Can J Microbiol. 1975 Jan;21(1):85–89. doi: 10.1139/m75-012. [DOI] [PubMed] [Google Scholar]
  55. Klug M. J., Markovetz A. J. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica. J Bacteriol. 1967 Jun;93(6):1847–1852. doi: 10.1128/jb.93.6.1847-1852.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Klug M. J., Markovetz A. J. Thermophilic bacterium isolated on n-tetradecane. Nature. 1967 Sep 2;215(5105):1082–1083. doi: 10.1038/2151082a0. [DOI] [PubMed] [Google Scholar]
  57. Le Petit J., Barthelemy M. H. Les hydrocarbures en mer: le problème de l'épuration des zones littorales par les microorganismes. Ann Inst Pasteur (Paris) 1968 Feb;114(2):149–158. [PubMed] [Google Scholar]
  58. Le Petit J., Tagger S. Dégradation des hydrocarbures en présence d'autres substances organiques par des bactéries isolées de l'eau de mer. Can J Microbiol. 1976 Nov;22(11):1654–1657. [PubMed] [Google Scholar]
  59. Lehmicke L. G., Williams R. T., Crawford R. L. 14C-most-probable-number method for enumeration of active heterotrophic microorganisms in natural waters. Appl Environ Microbiol. 1979 Oct;38(4):644–649. doi: 10.1128/aem.38.4.644-649.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Lough A. K. The chemistry and biochemistry of phytanic, pristanic and related acids. Prog Chem Fats Other Lipids. 1973;14(1):1–48. doi: 10.1016/0079-6832(75)90001-4. [DOI] [PubMed] [Google Scholar]
  61. Mateles R. I., Baruah J. N., Tannenbaum S. R. Growth of a thermophilic bacterium on hydrocarbons: a new source of single-cell protein. Science. 1967 Sep 15;157(3794):1322–1323. doi: 10.1126/science.157.3794.1322. [DOI] [PubMed] [Google Scholar]
  62. McKenna E. J., Kallio R. E. Microbial metabolism of the isoprenoid alkane pristane. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1552–1554. doi: 10.1073/pnas.68.7.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. McKenna E. J., Kallio R. E. The biology of hydrocarbons. Annu Rev Microbiol. 1965;19:183–208. doi: 10.1146/annurev.mi.19.100165.001151. [DOI] [PubMed] [Google Scholar]
  64. Mulkins-Phillips G. J., Stewart J. E. Distribution of hydrocarbon-utilizing bacteria in Northwestern Atlantic waters and coastal sediments. Can J Microbiol. 1974 Jul;20(7):955–956. doi: 10.1139/m74-147. [DOI] [PubMed] [Google Scholar]
  65. Mulkins-Phillips G. J., Stewart J. E. Effect of environmental parameters on bacterial degradation of Bunker C oil, Crude oils, and hydrocarbons. Appl Microbiol. 1974 Dec;28(6):915–922. doi: 10.1128/am.28.6.915-922.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Mulkins-Phillips G. J., Stewart J. E. Effect of four dispersants on biodegradation and growth of bacteria on crude oil. Appl Microbiol. 1974 Oct;28(4):547–552. doi: 10.1128/am.28.4.547-552.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Nyns E. J., Auquière J. P., Wiaux A. L. Taxonomic value of the property of fungi to assimilate hydrocarbons. Antonie Van Leeuwenhoek. 1968;34(4):441–457. doi: 10.1007/BF02046466. [DOI] [PubMed] [Google Scholar]
  68. OOYAMA J., FOSTER J. W. BACTERIAL OXIDATION OF CYCLOPARAFFINIC HYDROCARBONS. Antonie Van Leeuwenhoek. 1965;31:45–65. doi: 10.1007/BF02045875. [DOI] [PubMed] [Google Scholar]
  69. Olivieri R., Bacchin P., Robertiello A., Oddo N., Degen L., Tonolo A. Microbial degradation of oil spills enhanced by a slow-release fertilizer. Appl Environ Microbiol. 1976 May;31(5):629–634. doi: 10.1128/aem.31.5.629-634.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Perry J. J. Microbial cooxidations involving hydrocarbons. Microbiol Rev. 1979 Mar;43(1):59–72. doi: 10.1128/mr.43.1.59-72.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Perry J. J. Microbial metabolism of cyclic hydrocarbons and related compounds. CRC Crit Rev Microbiol. 1977 Sep;5(4):387–412. doi: 10.3109/10408417709102811. [DOI] [PubMed] [Google Scholar]
  72. Petit J., N'Guyen M. H. Besoins en phosphore des bactéries métabolisant les hydrocarbures en mer. Can J Microbiol. 1976 Sep;22(9):1364–1367. [PubMed] [Google Scholar]
  73. Pierce R. H., Jr, Cundell A. M., Traxler R. W. Persistence and biodegradation of spilled residual fuel oil on an estuarine beach. Appl Microbiol. 1975 May;29(5):646–652. doi: 10.1128/am.29.5.646-652.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pirnik M. P., Atlas R. M., Bartha R. Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol. 1974 Sep;119(3):868–878. doi: 10.1128/jb.119.3.868-878.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Pirnik M. P. Microbial oxidation of methyl branched alkanes. CRC Crit Rev Microbiol. 1977 Sep;5(4):413–422. doi: 10.3109/10408417709102812. [DOI] [PubMed] [Google Scholar]
  76. ROGOFF M. H. Oxidation of aromatic compounds by bacteria. Adv Appl Microbiol. 1961;3:193–221. doi: 10.1016/s0065-2164(08)70510-0. [DOI] [PubMed] [Google Scholar]
  77. Raymond R. L., Hudson J. O., Jamison V. W. Oil degradation in soil. Appl Environ Microbiol. 1976 Apr;31(4):522–535. doi: 10.1128/aem.31.4.522-535.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Raymond R. L., Jamison V. W. Biochemical activities of Nocardia. Adv Appl Microbiol. 1971;14:93–122. doi: 10.1016/s0065-2164(08)70541-0. [DOI] [PubMed] [Google Scholar]
  79. Raymond R. L., Jamison V. W., Hudson J. O. Microbial hydrocarbon co-oxidation. I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus Nocardia. Appl Microbiol. 1967 Jul;15(4):857–865. doi: 10.1128/am.15.4.857-865.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Reisfeld A., Rosenberg E., Gutnick D. Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol. 1972 Sep;24(3):363–368. doi: 10.1128/am.24.3.363-368.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Roubal G., Atlas R. M. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas. Appl Environ Microbiol. 1978 May;35(5):897–905. doi: 10.1128/aem.35.5.897-905.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. SENEZ J. C., AZOULAY E. [Dehydrogenation of paraffin hydrocarbons by non-proliferating suspensions and extracts of Pseudomonas aeruginosa]. Biochim Biophys Acta. 1961 Feb 18;47:307–316. doi: 10.1016/0006-3002(61)90291-8. [DOI] [PubMed] [Google Scholar]
  83. SEUBERT W., FASS E. UNTERSUCHUNGEN UEBER DEN BAKTERIELLEN ABBAU VON ISOPRENOIDEN. V. DER MECHANISMUS DES ISOPRENOIDABBAUES. Biochem Z. 1964 Dec 7;341:35–44. [PubMed] [Google Scholar]
  84. Schaeffer T. L., Cantwell S. G., Brown J. L., Watt D. S., Fall R. R. Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Appl Environ Microbiol. 1979 Oct;38(4):742–746. doi: 10.1128/aem.38.4.742-746.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Schwarz J. R., Walker J. D., Colwell R. R. Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol. 1975 May;21(5):682–687. doi: 10.1139/m75-098. [DOI] [PubMed] [Google Scholar]
  86. Seki H. Method for estimating the decomposition of hexadecane in the marine environment. Appl Environ Microbiol. 1976 Mar;31(3):439–441. doi: 10.1128/aem.31.3.439-441.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Sexstone A. J., Atlas R. M. Response of microbial populations in arctic tundra soils to crude oil. Can J Microbiol. 1977 Oct;23(10):1327–1333. doi: 10.1139/m77-201. [DOI] [PubMed] [Google Scholar]
  88. Shelton T. B., Hunter J. V. Anaerobic decomposition of oil in bottom sediments. J Water Pollut Control Fed. 1975 Sep;47(9):2256–2270. [PubMed] [Google Scholar]
  89. Tagger M. Clearing of teeth for study and demonstration of pulp. J Dent Educ. 1976 Mar;40(3):172–174. [PubMed] [Google Scholar]
  90. Walker J. D., Colwell R. R. Enumeration of petroleum-degrading microorganisms. Appl Environ Microbiol. 1976 Feb;31(2):198–207. doi: 10.1128/aem.31.2.198-207.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Walker J. D., Colwell R. R. Long-chain n-alkanes occurring during microbial degradation of petroleum. Can J Microbiol. 1976 Jun;22(6):886–891. doi: 10.1139/m76-128. [DOI] [PubMed] [Google Scholar]
  92. Walker J. D., Colwell R. R. Measuring the potential activity of hydrocarbon-degrading bacteria. Appl Environ Microbiol. 1976 Feb;31(2):189–197. doi: 10.1128/aem.31.2.189-197.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Walker J. D., Colwell R. R. Microbial petroleum degradation: use of mixed hydrocarbon substrates. Appl Microbiol. 1974 Jun;27(6):1053–1060. doi: 10.1128/am.27.6.1053-1060.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Walker J. D., Colwell R. R., Petrakis L. Bacterial degradation of motor oil. J Water Pollut Control Fed. 1975 Aug;47(8):2058–2066. [PubMed] [Google Scholar]
  95. Walker J. D., Colwell R. R., Petrakis L. Biodegradation of petroleum by Chesapeake Bay sediment bacteria. Can J Microbiol. 1976 Mar;22(3):423–428. doi: 10.1139/m76-063. [DOI] [PubMed] [Google Scholar]
  96. Walker J. D., Colwell R. R., Petrakis L. Biodegradation rates of components of petroleum. Can J Microbiol. 1976 Aug;22(8):1209–1213. doi: 10.1139/m76-179. [DOI] [PubMed] [Google Scholar]
  97. Walker J. D., Colwell R. R., Petrakis L. Degradation of petroleum by an alga, Prototheca zopfii. Appl Microbiol. 1975 Jul;30(1):79–81. doi: 10.1128/am.30.1.79-81.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Walker J. D., Colwell R. R., Petrakis L. Evaluation of petroleum-degrading potential of bacteria from water and sediment. Appl Microbiol. 1975 Dec;30(6):1036–1039. doi: 10.1128/am.30.6.1036-1039.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Walker J. D., Colwell R. R., Petrakis L. Microbial petroleum degradation: application of computerized mass spectrometry. Can J Microbiol. 1975 Nov;21(11):1760–1767. doi: 10.1139/m75-257. [DOI] [PubMed] [Google Scholar]
  100. Walker J. D., Colwell R. R. Some effects of petroleum on estuarine and marine microorganisms. Can J Microbiol. 1975 Mar;21(3):305–313. doi: 10.1139/m75-044. [DOI] [PubMed] [Google Scholar]
  101. Walker J. D., Petrakis L., Colwell R. R. Comparison of biodegradability of crude and fuel oils. Can J Microbiol. 1976 Apr;22(4):598–602. doi: 10.1139/m76-089. [DOI] [PubMed] [Google Scholar]
  102. Ward D. M., Brock T. D. Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. Appl Environ Microbiol. 1976 May;31(5):764–772. doi: 10.1128/aem.31.5.764-772.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Ward D. M., Brock T. D. Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol. 1978 Feb;35(2):353–359. doi: 10.1128/aem.35.2.353-359.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Westlake D. W., Jobson A. M., Cook F. D. In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can J Microbiol. 1978 Mar;24(3):254–260. doi: 10.1139/m78-044. [DOI] [PubMed] [Google Scholar]
  105. Westlake D. W., Jobson A., Phillippe R., Cook F. D. Biodegradability and crude oil composition. Can J Microbiol. 1974 Jul;20(7):915–928. doi: 10.1139/m74-141. [DOI] [PubMed] [Google Scholar]
  106. Wodzinski R. S., Larocca D. Bacterial growth kinetics on diphenylmethane and naphthalene-heptamethylnonane mixtures. Appl Environ Microbiol. 1977 Mar;33(3):660–665. doi: 10.1128/aem.33.3.660-665.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. ZOBELL C. E. Assimilation of hydrocarbons by microorganisms. Adv Enzymol Relat Subj Biochem. 1950;10:443–486. doi: 10.1002/9780470122556.ch9. [DOI] [PubMed] [Google Scholar]
  108. Zobell C. E. ACTION OF MICROORGANISMS ON HYDROCARBONS. Bacteriol Rev. 1946 Mar;10(1-2):1–49. [PMC free article] [PubMed] [Google Scholar]
  109. van Eyk J., Bartels T. J. Paraffin oxidation in Pseudomonas aeruginosa. I. Induction of paraffin oxidation. J Bacteriol. 1968 Sep;96(3):706–712. doi: 10.1128/jb.96.3.706-712.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. van der Linden A. C., Thijsse G. J. The mechanisms of microbial oxidations of petroleum hydrocarbons. Adv Enzymol Relat Areas Mol Biol. 1965;27:469–546. doi: 10.1002/9780470122723.ch10. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES