Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arch J. R., Newsholme E. A. Activities and some properties of adenylate cyclase and phosphodiesterase in muscle, liver and nervous tissues from vertebrates and invertebrates in relation to the control of the concentration of adenosine 3':5'-cyclic monophosphate. Biochem J. 1976 Sep 15;158(3):603–622. doi: 10.1042/bj1580603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atmar V. T., Throneberry G. O., Kuehn G. D. Effects of adenine and cytokinins on growth and protein kinase activity of Verticillium albo-atrum. Mycopathologia. 1976 Oct 22;59(3):171–174. doi: 10.1007/BF00627879. [DOI] [PubMed] [Google Scholar]
- Bhattacharya A., Datta A. Effect of cyclic AMP on RNA and protein synthesis in Candida albicans. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1483–1444. doi: 10.1016/s0006-291x(77)80140-x. [DOI] [PubMed] [Google Scholar]
- Borgia P., Sypherd P. S. Control of beta-glucosidase synthesis in Mucor racemosus. J Bacteriol. 1977 May;130(2):812–817. doi: 10.1128/jb.130.2.812-817.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownlee A. G., Phillips D. R., Polya G. M. Purification and characterization of two high-affinity (adenosine 3',5'-monophosphate)-binding proteins from yeast. Identification as multiple forms of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1980 Aug;109(1):39–49. doi: 10.1111/j.1432-1033.1980.tb04765.x. [DOI] [PubMed] [Google Scholar]
- Brownlee A. G., Polya G. M. The ligand specificity of the (adenosine 3',5'-monophosphate)-binding site of yeast glyceraldehyde-3-phosphate dehydrogenase. Interaction with adenosine derivatives and pharmacologically-active compounds. Eur J Biochem. 1980 Aug;109(1):51–59. doi: 10.1111/j.1432-1033.1980.tb04766.x. [DOI] [PubMed] [Google Scholar]
- Cailla H. L., Racine-Weisbuch M. S., Delaage M. A. Adenosine 3',5' cyclic monophosphate assay at 10-15 mole level. Anal Biochem. 1973 Dec;56(2):394–407. doi: 10.1016/0003-2697(73)90205-4. [DOI] [PubMed] [Google Scholar]
- Cantore M. L., Galvagno M. A., Passeron S. Variations in the levels of cyclic adenosine 3':5'-monophosphate and in the activities of adenylate cyclase and cyclic adenosine 3':5'-monophosphate phosphodiesterase during aerobic morphogenesis of Mucor rouxii. Arch Biochem Biophys. 1980 Feb;199(2):312–320. doi: 10.1016/0003-9861(80)90286-6. [DOI] [PubMed] [Google Scholar]
- Chandrasekaran K., Jayaraman J. Effect of cyclic AMP on the biogenesis of cytochrome oxidase in yeast. FEBS Lett. 1978 Mar 1;87(1):52–54. doi: 10.1016/0014-5793(78)80131-8. [DOI] [PubMed] [Google Scholar]
- Coffino P., Bourne H. R., Insel P. A., Melmon K. L., Johnson G., Vigne J. Studies of cyclic AMP action using mutant tissue culture cells. In Vitro. 1978 Jan;14(1):140–145. doi: 10.1007/BF02618180. [DOI] [PubMed] [Google Scholar]
- Coffino P., Gray J. W., Tomkins G. M. Cyclic AMP, a nonessential regulator of the cell cycle. Proc Natl Acad Sci U S A. 1975 Mar;72(3):878–882. doi: 10.1073/pnas.72.3.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. J., Atkinson M. M. Activation of Phycomyces adenosine 3', 5'-monophosphate phosphodiesterase by blue light. Biochem Biophys Res Commun. 1978 Jul 28;83(2):616–621. doi: 10.1016/0006-291x(78)91034-3. [DOI] [PubMed] [Google Scholar]
- Cohen R. J. Cyclic AMP levels in Phycomyces during a response to light. Nature. 1974 Sep 13;251(5471):144–146. doi: 10.1038/251144a0. [DOI] [PubMed] [Google Scholar]
- Corbin J. D., Soderling T. R., Park C. R. Regulation of adenosine 3',5'-monophosphate-dependent protein kinase. I. Preliminary characterization of the adipose tissue enzyme in crude extracts. J Biol Chem. 1973 Mar 10;248(5):1813–1821. [PubMed] [Google Scholar]
- Corbin J. D., Sugden P. H., West L., Flockhart D. A., Lincoln T. M., McCarthy D. Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Jun 10;253(11):3997–4003. [PubMed] [Google Scholar]
- Dandekar S., Modi V. V. Involvement of cyclic AMP in carotenogenesis and cell differentiation in Blakeslea trispora. Biochim Biophys Acta. 1980 Apr 3;628(4):398–406. doi: 10.1016/0304-4165(80)90389-x. [DOI] [PubMed] [Google Scholar]
- DeCarlo R. R., Somberg E. W. The effect of essential amino acid deprivation on macromolecular synthesis and nucleotide pool sizes in Neurospora crassa. Arch Biochem Biophys. 1974 Nov;165(1):201–212. doi: 10.1016/0003-9861(74)90156-8. [DOI] [PubMed] [Google Scholar]
- Dery C., Cooper S., Savageau M. A., Scanlon S. Identification and characterization of the cAMP binding proteins of yeast by photoaffinity labeling. Biochem Biophys Res Commun. 1979 Oct 12;90(3):933–939. doi: 10.1016/0006-291x(79)91917-x. [DOI] [PubMed] [Google Scholar]
- Dufau M. L., Tsuruhara T., Horner K. A., Podesta E., Catt K. J. Intermediate role of adenosine 3':5'-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3419–3423. doi: 10.1073/pnas.74.8.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhart B. M., Beck R. S. Induction of beta-glucosidases in Neurospora crassa. J Bacteriol. 1973 Oct;116(1):295–303. doi: 10.1128/jb.116.1.295-303.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein P. M., Silverman P. M. Induction of cyclic AMP phosphodiesterase in Blastocladiella emersonii and its relation to cyclic AMP metabolism. J Bacteriol. 1978 Sep;135(3):968–975. doi: 10.1128/jb.135.3.968-975.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang M., Butow R. A. Nucleotide reversal of mitochondrial repression in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1579–1583. doi: 10.1016/0006-291x(70)90568-1. [DOI] [PubMed] [Google Scholar]
- Feldman J. F. Circadian periodicity a neurospora: alteration by inhibitors of cyclic AMP phosphodiesterase. Science. 1975 Nov 21;190(4216):789–790. doi: 10.1126/science.173018. [DOI] [PubMed] [Google Scholar]
- Feldman J. F., Thayer J. P. Cyclic AMP-induced tyrosinase synthesis in Neurospora crassa. Biochem Biophys Res Commun. 1974 Dec 11;61(3):977–982. doi: 10.1016/0006-291x(74)90251-4. [DOI] [PubMed] [Google Scholar]
- Fell D. A. Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3',5'-cyclic monophosphate in animal cells. J Theor Biol. 1980 May 21;84(2):361–385. doi: 10.1016/s0022-5193(80)80011-7. [DOI] [PubMed] [Google Scholar]
- Flawiá M. M., Terenzi H. F., Torres H. N. Characterization of Neurospora crassa mutant stratins deficient in adenylate cyclase activity. Arch Biochem Biophys. 1977 Apr 30;180(2):334–342. doi: 10.1016/0003-9861(77)90046-7. [DOI] [PubMed] [Google Scholar]
- Flawiá M. M., Torres H. N. Activation of membrane-bound adenylate cyclase by glucagon in Neurospora crassa. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2870–2873. doi: 10.1073/pnas.69.10.2870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flawiá M. M., Torres H. N. Adenylate cyclase activity in Neurospora crassa. 3. Modulation by glucagon and insulin. J Biol Chem. 1973 Jul 10;248(13):4517–4520. [PubMed] [Google Scholar]
- Flawiá M. M., Torres H. N. Adenylate cyclase activity in Neurospora crassa. I. General properties. J Biol Chem. 1972 Nov 10;247(21):6873–6879. [PubMed] [Google Scholar]
- Flawiá M. M., Torres H. N. Adenylate cyclase activity in Neurospora crassa. II. Kinetics. J Biol Chem. 1972 Nov 10;247(21):6880–6883. [PubMed] [Google Scholar]
- Flawiá Mirtha M., Torres Héctor N. Insulin inhibition of membrane-bound adenylate cyclase in Neurospora crassa. FEBS Lett. 1973 Feb 15;30(1):74–78. doi: 10.1016/0014-5793(73)80622-2. [DOI] [PubMed] [Google Scholar]
- Flawiã M. M., Torres H. N. Adenylate cyclase activity in lubrol-treated membranes from Neurospora crassa. Biochim Biophys Acta. 1972 Dec 7;289(2):428–432. doi: 10.1016/0005-2744(72)90096-4. [DOI] [PubMed] [Google Scholar]
- Fonzi W. A., Shanley M., Opheim D. J. Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae. J Bacteriol. 1979 Jan;137(1):285–294. doi: 10.1128/jb.137.1.285-294.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foury F., Goffeau A. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3' :5'-monophosphate in the yeast Schizosaccharomyces pombe. J Biol Chem. 1975 Mar 25;250(6):2354–2362. [PubMed] [Google Scholar]
- Galvagno M. A., Moreno S., Cantore M. L., Passeron S. Cyclic adenosine 3',5'-monophosphate phosphodiesterase from Mucor rouxii: regulation of enzyme activity by phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 1979 Aug 13;89(3):779–785. doi: 10.1016/0006-291x(79)91846-1. [DOI] [PubMed] [Google Scholar]
- Garnjobst L., Tatum E. L. New crisp genes and crisp-modifiers in neurospora crassa. Genetics. 1970 Oct;66(2):281–290. doi: 10.1093/genetics/66.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass D. B., Krebs E. G. Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Annu Rev Pharmacol Toxicol. 1980;20:363–388. doi: 10.1146/annurev.pa.20.040180.002051. [DOI] [PubMed] [Google Scholar]
- Gold M. H., Farrand R. J., Livoni J. P., Segel I. H. Neurospora crassa glucogen phosphorylase: interconversion and kinetic properties of the "active" form. Arch Biochem Biophys. 1974 Apr 2;161(2):515–527. doi: 10.1016/0003-9861(74)90334-8. [DOI] [PubMed] [Google Scholar]
- Gold M. H., Segel I. H. Neurospora crassa protein kinase. Purification, properties, and kinetic mechanism. J Biol Chem. 1974 Apr 25;249(8):2417–2423. [PubMed] [Google Scholar]
- Gomes S. L., Da Costa Maia J. C. Differential effects of manganese ions on Blastocladiella emersonii adenylate cyclase. Biochim Biophys Acta. 1979 Mar 16;567(1):257–264. doi: 10.1016/0005-2744(79)90192-x. [DOI] [PubMed] [Google Scholar]
- Gomes S. L., Mennucci L., da Costa Maia J. C. Adenylate cyclase activity and cyclic AMP metabolism during cytodifferentiation of Blastocladiella emersonii. Biochim Biophys Acta. 1978 Jun 15;541(2):190–198. doi: 10.1016/0304-4165(78)90392-6. [DOI] [PubMed] [Google Scholar]
- Gradmann D., Slayman C. L. Oscillations of an electrogenic pump in the plasma membrane of Neurospora. J Membr Biol. 1975 Aug 29;23(2):181–212. doi: 10.1007/BF01870250. [DOI] [PubMed] [Google Scholar]
- Greengard P. Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature. 1976 Mar 11;260(5547):101–108. doi: 10.1038/260101a0. [DOI] [PubMed] [Google Scholar]
- Haley B. E. Photoaffinity labeling of adenosine 3',5'-cyclic monophosphate binding sites of human red cell membranes. Biochemistry. 1975 Aug 26;14(17):3852–3857. doi: 10.1021/bi00688a018. [DOI] [PubMed] [Google Scholar]
- Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
- Hixson C. S., Krebs E. G. Characterization of a cyclic AMP-binding protein from bakers' yeast. Identification as a regulatory subunit of cyclic AMP-dependent protein kinase. J Biol Chem. 1980 Mar 10;255(5):2137–2145. [PubMed] [Google Scholar]
- Jaynes P. K., McDonough J. P., Mahler H. R. Identification of cAMP binding proteins associated with the plasma membrane of the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1980 May 14;94(1):16–22. doi: 10.1016/s0006-291x(80)80180-x. [DOI] [PubMed] [Google Scholar]
- Jorge J. A., Terenzi H. F. An enzymatic alteration secondary to adenylyl cyclase deficiency in the cr-1 (crisp) mutant of Neurospora crassa: nicotinamide adenine dinucleotide (phosphate) glycohydrolase overproduction. Dev Biol. 1980 Jan;74(1):231–238. doi: 10.1016/0012-1606(80)90065-2. [DOI] [PubMed] [Google Scholar]
- Judewicz N. D., Glikin G. C., Torres H. N. Protein Kinase Activities in Neurospora crassa. Arch Biochem Biophys. 1981 Jan;206(1):87–92. doi: 10.1016/0003-9861(81)90069-2. [DOI] [PubMed] [Google Scholar]
- Juliani M. H., Brochetto M. R., Da Costa Maia J. C. Changes in cyclic AMP binding and protein kinase activities during growth and differentiation of Blastocladiella emersonii. Cell Differ. 1979 Dec;8(6):421–430. doi: 10.1016/0045-6039(79)90038-1. [DOI] [PubMed] [Google Scholar]
- Juliani M. H., Da Costa Maia J. C. Cyclic AMP-dependent and -independent protein kinases of the water mold, Blastocladiella emersonii. Biochim Biophys Acta. 1979 Apr 12;567(2):347–356. doi: 10.1016/0005-2744(79)90121-9. [DOI] [PubMed] [Google Scholar]
- Kempen H. J., de Pont J. J., Bonting S. L., Stadhouders A. M. The cytochemical localization of adenylate cyclase: fact or artifact? J Histochem Cytochem. 1978 Apr;26(4):298–312. doi: 10.1177/26.4.659835. [DOI] [PubMed] [Google Scholar]
- Larsen A. D., Sypherd P. S. Cyclic adenosine 3',5'-monophosphate and morphogenesis in Mucor racemosus. J Bacteriol. 1974 Feb;117(2):432–438. doi: 10.1128/jb.117.2.432-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law R. E., Ferro A. J. Effect of S-adenosylmethionine and cyclic adenosine 3',5'-monophosphate on RNA synthesis during glucose-depression in Saccharomyces cerevisiae. FEBS Lett. 1977 Aug 1;80(1):153–156. doi: 10.1016/0014-5793(77)80428-6. [DOI] [PubMed] [Google Scholar]
- Lemay A., Jarett L. Pitfalls in the use of lead nitrate for the histochemical demonstration of adenylate cyclase activity. J Cell Biol. 1975 Apr;65(1):39–50. doi: 10.1083/jcb.65.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liao H., Thorner J. Yeast mating pheromone alpha factor inhibits adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1898–1902. doi: 10.1073/pnas.77.4.1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Londesborough J. C., Nurminen T. A manganese-dependent adenyl cyclase in baker's yeast, Saccharomyces cerevisiae. Acta Chem Scand. 1972;26(8):3396–3398. doi: 10.3891/acta.chem.scand.26-3396. [DOI] [PubMed] [Google Scholar]
- Londesborough J. C. Soluble and membrane-bound cyclic AMP diesterase activity with a low Michaelis constant in baker's yeast. FEBS Lett. 1975 Feb 1;50(2):283–287. doi: 10.1016/0014-5793(75)80509-6. [DOI] [PubMed] [Google Scholar]
- Londesborough J. Characterization of an adenosine 3':5'-cyclic monophosphate phosphodiesterase from baker's yeast. Its binding to subcellular particles, catalytic properties and gel-filtration behaviour. Biochem J. 1977 Jun 1;163(3):467–476. doi: 10.1042/bj1630467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Londesborough J., Varimo K. The temperature-dependence of adenylate cyclase from baker's yeast. Biochem J. 1979 Sep 1;181(3):539–543. doi: 10.1042/bj1810539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahler H. R., Lin C. C. Exogenous adenosine 3': 5'-monophosphate can release yeast from catabolite repression. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1039–1047. doi: 10.1016/0006-291x(78)91500-0. [DOI] [PubMed] [Google Scholar]
- Maia J. C., Camargo E. P. c-AMP phosphodiesterase activity during growth and differentiation in Blastocladiella emersonii. Cell Differ. 1974 Sep;3(3):147–155. doi: 10.1016/0045-6039(74)90026-8. [DOI] [PubMed] [Google Scholar]
- Maia J. C., Gomes S. L., Mennucci L. Induction of germination in Blastocladiella emersonii by cyclic AMP and inhibitors of cyclic AMP phosphodiesterase. Arch Biol Med Exp (Santiago) 1979 Oct;12(3):407–410. [PubMed] [Google Scholar]
- Maresca B., Medoff G., Schlessinger D., Kobayashi G. S. Regulation of dimorphism in the pathogenic fungus Histoplasma capsulatum. Nature. 1977 Mar 31;266(5601):447–448. doi: 10.1038/266447a0. [DOI] [PubMed] [Google Scholar]
- Milne J., Cook R. A. The interaction of cyclic 3',5'-adenosine monophosphate with yeast glyceraldehyde-3-phosphate dehydrogenase. I. Equilibrium dialysis studies. Biochemistry. 1974 Sep 24;13(20):4196–4199. doi: 10.1021/bi00717a021. [DOI] [PubMed] [Google Scholar]
- Mishra N. C. The effect of cyclic adenosine monophosphate on the growth of Neurospora crassa. Naturwissenschaften. 1976 Oct;63(10):485–485. doi: 10.1007/BF00624588. [DOI] [PubMed] [Google Scholar]
- Montenecourt B. S., Kuo S. C., Lampen J. O. Saccharomyces mutants with invertase formation resistant to repression by hexoses. J Bacteriol. 1973 Apr;114(1):233–238. doi: 10.1128/jb.114.1.233-238.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno S., Passeron S. Further studies on cyclic adenosine 3':5'-monophosphate protein kinase from dimorphic fungus Mucor rouxii. Arch Biochem Biophys. 1980 Feb;199(2):321–330. doi: 10.1016/0003-9861(80)90287-8. [DOI] [PubMed] [Google Scholar]
- Moreno S., Paveto C., Passeron S. Multiple protein kinase activities in the dimorphic fungus Mucor rouxii. Comparison with a cyclic adenosine 3',5'-monophosphate binding protein. Arch Biochem Biophys. 1977 Apr 30;180(2):225–231. doi: 10.1016/0003-9861(77)90032-7. [DOI] [PubMed] [Google Scholar]
- Niimi M., Niimi K., Tokunaga J., Nakayama H. Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol. 1980 Jun;142(3):1010–1014. doi: 10.1128/jb.142.3.1010-1014.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlowski M. Changing pattern of cyclic AMP-binding proteins during germination of Mucor racemosus sporangiospores. Biochem J. 1979 Aug 15;182(2):547–554. doi: 10.1042/bj1820547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlowski M. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor. Arch Microbiol. 1980 Jun;126(2):133–140. doi: 10.1007/BF00511218. [DOI] [PubMed] [Google Scholar]
- Pall M. L. Cyclic AMP and the plasma membrane potential in Neurospora crassa. J Biol Chem. 1977 Oct 25;252(20):7146–7150. [PubMed] [Google Scholar]
- Pall M. L., Trevillyan J. M., Hinman N. Deficient cyclic adenosine 3',5'-monophosphate control in mutants of two genes of Neurospora crassa. Mol Cell Biol. 1981 Jan;1(1):1–8. doi: 10.1128/mcb.1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer W. K., McPherson J. M., Walsh D. A. Critical controls in the evaluation of cAMP-dependent protein kinase activity ratios as indices of hormonal action. J Biol Chem. 1980 Apr 10;255(7):2663–2666. [PubMed] [Google Scholar]
- Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paveto C., Epstein A., Passeron S. Studies on cyclic adenosine 3' ,5'-monophosphate levels, Adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii. Arch Biochem Biophys. 1975 Aug;169(2):449–457. doi: 10.1016/0003-9861(75)90187-3. [DOI] [PubMed] [Google Scholar]
- Paveto C., Passeron S. Some kinetic properties of Mucor rouxii phosphofructokinase. Effect of cyclic adenosine 3', 5'-monophosphate. Arch Biochem Biophys. 1977 Jan 15;178(1):1–7. doi: 10.1016/0003-9861(77)90164-3. [DOI] [PubMed] [Google Scholar]
- Paznokas J. L., Sypherd P. S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol. 1975 Oct;124(1):134–139. doi: 10.1128/jb.124.1.134-139.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters J., Sypherd P. S. Morphology-associated expression nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Mucorracemosus. J Bacteriol. 1979 Mar;137(3):1134–1139. doi: 10.1128/jb.137.3.1134-1139.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polya G. M., Brownlee A. G., Hynes M. J. Enzymology and genetic regulation of a cyclic nucleotide-binding phosphodiesterase-phosphomonoesterase from Aspergillus nidulans. J Bacteriol. 1975 Nov;124(2):693–703. doi: 10.1128/jb.124.2.693-703.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powers P. A., Pall M. L. Cyclic AMP-dependent protein kinase of Neurospora crassa. Biochem Biophys Res Commun. 1980 Jul 31;95(2):701–706. doi: 10.1016/0006-291x(80)90842-6. [DOI] [PubMed] [Google Scholar]
- Ramos E. H., de Bongioanni L. C., Casado M. C., Stoppani A. O. Some properties of L-[14C]leucine transport in Saccharomyces ellipsoideus. Biochim Biophys Acta. 1977 Jun 2;467(2):220–237. doi: 10.1016/0005-2736(77)90198-5. [DOI] [PubMed] [Google Scholar]
- Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
- Rock M. G., Cook R. A. The effect of cyclic 3',5'-adenosine monophosphate on yeast glyceraldehyde-3-phosphate dehydrogenase. II. Initial velocity kinetic studies. Biochemistry. 1974 Sep 24;13(20):4200–4204. doi: 10.1021/bi00717a022. [DOI] [PubMed] [Google Scholar]
- Rosenberg G., Pall M. L. Cyclic AMP and cyclic GMP in germinating conidia of Neurospora crassa. Arch Microbiol. 1978 Jul;118(1):87–90. doi: 10.1007/BF00406079. [DOI] [PubMed] [Google Scholar]
- Rosenberg G., Pall M. L. Properties of two cyclic nucleotide-deficient mutants of Neurospora crassa. J Bacteriol. 1979 Mar;137(3):1140–1144. doi: 10.1128/jb.137.3.1140-1144.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
- Schamhart D. H., Ten Berge A. M., Van De Poll K. W. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state. J Bacteriol. 1975 Mar;121(3):747–752. doi: 10.1128/jb.121.3.747-752.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlanderer G., Dellweg H. Cyclid AMP and catabolite repression in yeasts, In Schizosaccharomyces pombe glucose lowers both intracellular adenosine 3':5'-monophosphate levels and the activity of catabolite-sensitive enzymes. Eur J Biochem. 1974 Nov 1;49(1):305–316. doi: 10.1111/j.1432-1033.1974.tb03835.x. [DOI] [PubMed] [Google Scholar]
- Schwalb M. N. Effect of adenosine 3',5'-cyclic monophosphate on the morphogenesis of fruit bodies of Schizophyllum commune. Arch Mikrobiol. 1974 Mar 1;96(1):17–20. doi: 10.1007/BF00590159. [DOI] [PubMed] [Google Scholar]
- Scott W. A. Adenosine 3':5'-cyclic monophosphate deficiency in Neurospora crassa. Proc Natl Acad Sci U S A. 1976 Sep;73(9):2995–2999. doi: 10.1073/pnas.73.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott W. A., Solomon B. Adenosine 3',5'-cyclic monophosphate and morphology in Neurospora crassa: drug-induced alterations. J Bacteriol. 1975 May;122(2):454–463. doi: 10.1128/jb.122.2.454-463.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott W. A., Solomon B. Cyclic 3',5'-AMP phosphodiesterase of Neurospora crassa. Biochem Biophys Res Commun. 1973 Aug 6;53(3):1024–1030. doi: 10.1016/0006-291x(73)90194-0. [DOI] [PubMed] [Google Scholar]
- Silverman P. M. Cyclic AMP binding proteins and cyclic AMP-dependent protein kinase from Blastocladiella emersonii. J Bacteriol. 1978 Sep;135(3):976–980. doi: 10.1128/jb.135.3.976-980.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverman P. M., Epstein P. M. Cyclic nucleotide metabolism coupled to cytodifferentiation of Blastocladiella emersonii. Proc Natl Acad Sci U S A. 1975 Feb;72(2):442–446. doi: 10.1073/pnas.72.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soderling T. R., Park C. R. Recent advances in glycogen metabolism. Adv Cyclic Nucleotide Res. 1974;4(0):283–333. [PubMed] [Google Scholar]
- Somasundaram T., Chandrasekaran K., Jayaraman J., Rajamanickam C. Role of cyclic AMP in mitochondriogenesis in yeast. Biochem Biophys Res Commun. 1980 Jan 29;92(2):655–661. doi: 10.1016/0006-291x(80)90383-6. [DOI] [PubMed] [Google Scholar]
- Speziali G. A., Van Wijk R. Cyclic 3',5'-AMP phosphodiesterase of Saccharomyces carlsbergensis. Inhibition by adenosine 5'-triphosphate, inorganic pyrophosphate and inorganic polyphosphate. Biochim Biophys Acta. 1971 Jun 16;235(3):466–472. doi: 10.1016/0005-2744(71)90288-9. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Kipnis D. M., Utiger R., Parker C. Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1969 Sep;64(1):367–373. doi: 10.1073/pnas.64.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sy J., Richter D. Content of cyclic 3',5'-adenosine monophosphate and adenylyl cyclase in yeast at various growth conditions. Biochemistry. 1972 Jul 18;11(15):2788–2791. doi: 10.1021/bi00765a009. [DOI] [PubMed] [Google Scholar]
- Sy J., Richter D. Separation of a cyclic 3',5'-adenosine monophosphate binding protein from yeast. Biochemistry. 1972 Jul 18;11(15):2784–2787. doi: 10.1021/bi00765a008. [DOI] [PubMed] [Google Scholar]
- Sypherd P. S., Borgia P. T., Paznokas J. L. Biochemistry of dimorphism in the fungus Mucor. Adv Microb Physiol. 1978;18:67–104. doi: 10.1016/s0065-2911(08)60415-4. [DOI] [PubMed] [Google Scholar]
- Takai Y., Sakai K., Morishita Y., Yamamura H., Nishizuka Y. Functional similarity of yeast and mammalian adenosine 3',5'-monophosphate-dependent protein kinases. Biochem Biophys Res Commun. 1974 Jul 24;59(2):646–652. doi: 10.1016/s0006-291x(74)80028-8. [DOI] [PubMed] [Google Scholar]
- Takai Y., Yamamura H., Nishizuka Y. Adenosine 3':5'-monophosphate-dependent protein kinase from yeast. J Biol Chem. 1974 Jan 25;249(2):530–535. [PubMed] [Google Scholar]
- Terenzi H. F., Flawia M. M., Tellez-Inon M. T., Torres H. N. Control of Neurospora crassa morphology by cyclic adenosine 3', 5'-monophosphate and dibutyryl cyclic adenosine 3', 5'-monophosphate. J Bacteriol. 1976 Apr;126(1):91–99. doi: 10.1128/jb.126.1.91-99.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terenzi H. F., Flawiá M. M., Torres H. N. A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):990–996. doi: 10.1016/s0006-291x(74)80241-x. [DOI] [PubMed] [Google Scholar]
- Terenzi H. F., Jorge J. A., Roselino J. E., Migliorini R. H. Adenylyl cyclase deficient cr-1 (Crisp) mutant of Neurospora crassa: cyclic AMP-dependent nutritional deficiencies. Arch Microbiol. 1979;123(3):251–258. doi: 10.1007/BF00406658. [DOI] [PubMed] [Google Scholar]
- Tomkins G. M. The metabolic code. Science. 1975 Sep 5;189(4205):760–763. doi: 10.1126/science.169570. [DOI] [PubMed] [Google Scholar]
- Trevillyan J. M., Pall M. L. Control of cyclic adenosine 3',5'-monophosphate levels by depolarizing agents in fungi. J Bacteriol. 1979 May;138(2):397–403. doi: 10.1128/jb.138.2.397-403.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuboi M., Yanagishima N. Effect of cyclic AMP, theophylline and caffeine on the glucose repression of sporulation in Saccharomyces cerevisiae. Arch Mikrobiol. 1973 Oct 4;93(1):1–12. doi: 10.1007/BF00666076. [DOI] [PubMed] [Google Scholar]
- Tu J. C., Malhotra S. K. Histochemical localization of adenyl cyclase in the fungus Phycomyces blakesleeanus. J Histochem Cytochem. 1973 Dec;21(12):1041–1046. doi: 10.1177/21.12.1041. [DOI] [PubMed] [Google Scholar]
- Tu J. C., Malhotra S. K. The significance of cAMP induced alterations in the cellular structure of Phycomyces. Can J Microbiol. 1977 Apr;23(4):378–388. doi: 10.1139/m77-056. [DOI] [PubMed] [Google Scholar]
- Téllez De I nón M. T., Torres H. N. Regulation of glycogen phosphorylase a phosphatase in Neurospora crassa. Biochim Biophys Acta. 1973 Feb 28;297(2):399–412. [PubMed] [Google Scholar]
- Téllez-Iñn M. T., Torres H. N. Interconvertible forms of glycogen phosphorylase in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jun;66(2):459–463. doi: 10.1073/pnas.66.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uno I., Ishikawa T. Control of adenosine 3',5'-monophosphate level and protein phosphorylation by depolarizing agents in Coprinus macrorhizus. Biochim Biophys Acta. 1981 Jan 7;672(1):108–113. doi: 10.1016/0304-4165(81)90284-1. [DOI] [PubMed] [Google Scholar]
- Uno I., Ishikawa T. Effect of cyclic AMP on glycogen phosphorylase in Coprinus macrorhizus. Biochim Biophys Acta. 1976 Nov 8;452(1):112–120. doi: 10.1016/0005-2744(76)90062-0. [DOI] [PubMed] [Google Scholar]
- Uno I., Ishikawa T. Metabolism of adenosine 3',5'-cyclic monophosphate and induction of fruiting bodies in Coprinus macrorhizus. J Bacteriol. 1973 Mar;113(3):1249–1255. doi: 10.1128/jb.113.3.1249-1255.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uno I., Ishikawa T. Purification and identification of the fruiting-inducing substances in Coprinus macrorhizus. J Bacteriol. 1973 Mar;113(3):1240–1248. doi: 10.1128/jb.113.3.1240-1248.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uno I., Yamaguchi M., Ishikawa T. The effect of light on fruiting body formation and adenosine 3':5'-cyclic monophosphate metabolism in Coprinus macrorhizus. Proc Natl Acad Sci U S A. 1974 Feb;71(2):479–483. doi: 10.1073/pnas.71.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale V. L., Gomes S. L., Maia J. C., Mennucci L. Transient cyclic AMP accumulation in germinating zoospores of Blastocladiella emersonii. FEBS Lett. 1976 Aug 15;67(2):189–192. doi: 10.1016/0014-5793(76)80363-8. [DOI] [PubMed] [Google Scholar]
- Van Wijk R., Konijn T. M. Cyclic 3', 5'-amp in Saccharomyces carlsbergensis under various conditions of catabolite repression. FEBS Lett. 1971 Mar 5;13(3):184–186. doi: 10.1016/0014-5793(71)80231-4. [DOI] [PubMed] [Google Scholar]
- Varimo K., Londesborough J. Evidence for essential arginine in yeast adenylate cyclase. FEBS Lett. 1979 Oct 1;106(1):153–156. doi: 10.1016/0014-5793(79)80716-4. [DOI] [PubMed] [Google Scholar]
- Varimo K., Londesborough J. Solubilization and other studies on adenylate cyclase of baker's yeast. Biochem J. 1976 Nov;159(2):363–370. doi: 10.1042/bj1590363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber W., Hilz H. Adenosine-3':5'-monophosphate-binding proteins from bovine kidney. Isolation by affinity chromatography and limited proteolysis of the regulatory subunit of protein kinase II. Eur J Biochem. 1978 Feb 1;83(1):215–225. doi: 10.1111/j.1432-1033.1978.tb12086.x. [DOI] [PubMed] [Google Scholar]
- Wells J. N., Hardman J. G. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1977;8:119–143. [PubMed] [Google Scholar]
- Wheeler G. E., Schibeci A., Epand R. M., Rattray J. B., Kidby D. K. Subcellular localization and some properties of the adenylate cyclase activity of the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta. 1974 Nov 4;372(1):15–22. doi: 10.1016/0304-4165(74)90068-3. [DOI] [PubMed] [Google Scholar]
- Wiseman A., Lim T. K. Adenosine 3':5'-cyclic monophosphate in lifting of glucose repression of alpha-glucosidase by fluoride in yeast [proceedings]. Biochem Soc Trans. 1977;5(4):970–973. doi: 10.1042/bst0050970. [DOI] [PubMed] [Google Scholar]
- Wiseman A., Lim T. K., Woods L. F. Regulation of the biosynthesis of cytochrome P-450 in brewer's yeast. Role of cyclic AMP. Biochim Biophys Acta. 1978 Dec 18;544(3):615–623. doi: 10.1016/0304-4165(78)90335-5. [DOI] [PubMed] [Google Scholar]
- Wold W. S., Suzuki I. Cyclic AMP and citric acid accumulation by Aspergillus niger. Biochem Biophys Res Commun. 1973 Jan 23;50(2):237–244. doi: 10.1016/0006-291x(73)90831-0. [DOI] [PubMed] [Google Scholar]
- Wold W. S., Suzuki I. Demonstration in Aspergillus niger of adenyl cyclase, a cyclic adenosine 3',5'-monophosphate-binding protein, and studies on intracellular and extracellular phosphodiesterases. Can J Microbiol. 1974 Nov;20(11):1567–1576. doi: 10.1139/m74-243. [DOI] [PubMed] [Google Scholar]
- Wold W. S., Suzuki I. Promotion of conidia aggregation in Aspergillus niger by cyclic AMP and 5'-GMP. Biochem Biophys Res Commun. 1973 Dec 10;55(3):824–830. doi: 10.1016/0006-291x(73)91218-7. [DOI] [PubMed] [Google Scholar]
- Yang S. T., Deal W. C., Jr Metabolic control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde 3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry. 1969 Jul;8(7):2806–2813. doi: 10.1021/bi00835a017. [DOI] [PubMed] [Google Scholar]
- Zonneveld B. J. The effect of glucose and manganese on adenosine-3',5'-monophosphate levels during growth and differentiation of Aspergillus nidulans. Arch Microbiol. 1976 May 3;108(1):41–44. doi: 10.1007/BF00425091. [DOI] [PubMed] [Google Scholar]
- van Solingen P., van der Plaat J. B. Partial purification of the protein system controlling the breakdown of trehalose in baker's yeast. Biochem Biophys Res Commun. 1975 Feb 3;62(3):553–560. doi: 10.1016/0006-291x(75)90434-9. [DOI] [PubMed] [Google Scholar]
- van der Plaat J. B. Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker's yeast. Biochem Biophys Res Commun. 1974 Feb 4;56(3):580–587. doi: 10.1016/0006-291x(74)90643-3. [DOI] [PubMed] [Google Scholar]