Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1983 Jun;47(2):150–168. doi: 10.1128/mr.47.2.150-168.1983

Selection in chemostats.

D E Dykhuizen, D L Hartl
PMCID: PMC281569  PMID: 6308409

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATWOOD K. C., SCHNEIDER L. K., RYAN F. J. Periodic selection in Escherichia coli. Proc Natl Acad Sci U S A. 1951 Mar;37(3):146–155. doi: 10.1073/pnas.37.3.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ATWOOD K. C., SCHNEIDER L. K., RYAN F. J. Selective mechanisms in bacteria. Cold Spring Harb Symp Quant Biol. 1951;16:345–355. doi: 10.1101/sqb.1951.016.01.026. [DOI] [PubMed] [Google Scholar]
  3. Adams J., Hansche P. E. Population studies in microorganisms. I. Evolution of diploidy in Saccharomyces cerevisiae. Genetics. 1974 Feb;76(2):327–338. doi: 10.1093/genetics/76.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson T. F., Lustbader E. Inheritability of plasmids and population dynamics of cultured cells. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4085–4089. doi: 10.1073/pnas.72.10.4085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biel S. W., Hartl D. L. Evolution of transposons: natural selection for Tn5 in Escherichia coli K12. Genetics. 1983 Apr;103(4):581–592. doi: 10.1093/genetics/103.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloom F. R., McFall E. Isolation and characterization of D-serine deaminase constitutive mutants by utilization of D-serine as sole carbon or nitrogen source. J Bacteriol. 1975 Mar;121(3):1078–1084. doi: 10.1128/jb.121.3.1078-1084.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CONTOIS D. E. Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol. 1959 Aug;21:40–50. doi: 10.1099/00221287-21-1-40. [DOI] [PubMed] [Google Scholar]
  9. Campbell A. Evolutionary significance of accessory DNA elements in bacteria. Annu Rev Microbiol. 1981;35:55–83. doi: 10.1146/annurev.mi.35.100181.000415. [DOI] [PubMed] [Google Scholar]
  10. Chao L., Levin B. R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6324–6328. doi: 10.1073/pnas.78.10.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Collins S. H., Jarvis A. W., Lindsay R. J., Hamilton W. A. Proton movements coupled to lactate and alanine transport in Escherichia coli: isolation of mutants with altered stoichiometry in alanine transport. J Bacteriol. 1976 Jun;126(3):1232–1244. doi: 10.1128/jb.126.3.1232-1244.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cooney C. L., Wang D. I. Transient response of Enterobacter aerogenes under a dual nutrient limitation in a chemostat. Biotechnol Bioeng. 1976 Feb;18(2):189–198. doi: 10.1002/bit.260180205. [DOI] [PubMed] [Google Scholar]
  13. Cox E. C., Gibson T. C. Selection for high mutation rates in chemostats. Genetics. 1974 Jun;77(2):169–184. doi: 10.1093/genetics/77.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dabes J. N., Finn R. K., Welke C. R. Equations of substrate-limited growth: the case for blackman kinetics. Biotechnol Bioeng. 1973 Nov;15(6):1159–1177. doi: 10.1002/bit.260150613. [DOI] [PubMed] [Google Scholar]
  15. Dykhuizen D., Campbell J. H., Rolfe B. G. The influences of a lambda prophage on the growth rate of Escherichia coli. Microbios. 1978;23(92):99–113. [PubMed] [Google Scholar]
  16. Edlin G., Lin L., Kudrna R. Lambda lysogens of E. coli reproduce more rapidly than non-lysogens. Nature. 1975 Jun 26;255(5511):735–737. doi: 10.1038/255735a0. [DOI] [PubMed] [Google Scholar]
  17. Francis J. C., Hansche P. E. Directed Evolution of Metabolic Pathways in Microbial Populations II. a Repeatable Adaptation in SACCHAROMYCES CEREVISIAE. Genetics. 1973 Jun;74(2):259–265. doi: 10.1093/genetics/74.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Freter R., Brickner H., Fekete J., Vickerman M. M., Carey K. E. Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun. 1983 Feb;39(2):686–703. doi: 10.1128/iai.39.2.686-703.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Freter R., Freter R. R., Brickner H. Experimental and mathematical models of Escherichia coli plasmid transfer in vitro and in vivo. Infect Immun. 1983 Jan;39(1):60–84. doi: 10.1128/iai.39.1.60-84.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Freter R., Stauffer E., Cleven D., Holdeman L. V., Moore W. E. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun. 1983 Feb;39(2):666–675. doi: 10.1128/iai.39.2.666-675.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gibson T. C., Scheppe M. L., Cox E. C. Fitness of an Escherichia coli mutator gene. Science. 1970 Aug 14;169(3946):686–688. doi: 10.1126/science.169.3946.686. [DOI] [PubMed] [Google Scholar]
  22. Godwin D., Slater J. H. The influence of the growth environment on the stability of a drug resistance plasmid in Escherichia coli K12. J Gen Microbiol. 1979 Mar;111(1):201–210. doi: 10.1099/00221287-111-1-201. [DOI] [PubMed] [Google Scholar]
  23. HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
  24. HORIUCHI T., TOMIZAWA J. I., NOVICK A. Isolation and properties of bacteria capable of high rates of beta-galactosidase synthesis. Biochim Biophys Acta. 1962 Jan 22;55:152–163. doi: 10.1016/0006-3002(62)90941-1. [DOI] [PubMed] [Google Scholar]
  25. Hansche P. E., Beres V., Lange P. Gene duplication in Saccharomyces cerevisiae. Genetics. 1978 Apr;88(4 Pt 1):673–687. [PMC free article] [PubMed] [Google Scholar]
  26. Hansche P. E. Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae. Genetics. 1975 Apr;79(4):661–674. doi: 10.1093/genetics/79.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Harder W., Kuenen J. G. A review. Microbial selection in continuous culture. J Appl Bacteriol. 1977 Aug;43(1):1–24. doi: 10.1111/j.1365-2672.1977.tb00717.x. [DOI] [PubMed] [Google Scholar]
  28. Hartl D. L., Dykhuizen D. E. Potential for selection among nearly neutral allozymes of 6-phosphogluconate dehydrogenase in Escherichia coli. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6344–6348. doi: 10.1073/pnas.78.10.6344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hartl D., Dykhuizen D. A selectively driven molecular clock. Nature. 1979 Sep 20;281(5728):230–231. doi: 10.1038/281230a0. [DOI] [PubMed] [Google Scholar]
  30. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants. J Bacteriol. 1966 Mar;91(3):1161–1167. doi: 10.1128/jb.91.3.1161-1167.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Helling R. B., Kinney T., Adams J. The maintenance of Plasmid-containing organisms in populations of Escherichia coli. J Gen Microbiol. 1981 Mar;123(1):129–141. doi: 10.1099/00221287-123-1-129. [DOI] [PubMed] [Google Scholar]
  32. Jones I. M., Primrose S. B., Robinson A., Ellwood D. C. Maintenance of some ColE1-type plasmids in chemostat culture. Mol Gen Genet. 1980;180(3):579–584. doi: 10.1007/BF00268063. [DOI] [PubMed] [Google Scholar]
  33. Koch A. L. The pertinence of the periodic selection phenomenon to prokaryote evolution. Genetics. 1974 May;77(1):127–142. doi: 10.1093/genetics/77.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. LARSEN D. H., DIMMICK R. L. ATTACHMENT AND GROWTH OF BACTERIA ON SURFACES OF CONTINUOUS-CULTURE VESSELS. J Bacteriol. 1964 Nov;88:1380–1387. doi: 10.1128/jb.88.5.1380-1387.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lange P., Hansche P. E. Mapping of a centromere-linked gene responsible for constitutive acid phosphatase synthesis in yeast. Mol Gen Genet. 1980;180(3):605–607. doi: 10.1007/BF00268067. [DOI] [PubMed] [Google Scholar]
  36. Levin B. R. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics. 1981 Sep;99(1):1–23. doi: 10.1093/genetics/99.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Levin B. R., Rice V. A. The kinetics of transfer of nonconjugative plasmids by mobilizing conjugative factors. Genet Res. 1980 Jun;35(3):241–259. doi: 10.1017/s0016672300014117. [DOI] [PubMed] [Google Scholar]
  38. Levin B. R., Stewart F. M., Rice V. A. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid. 1979 Apr;2(2):247–260. doi: 10.1016/0147-619x(79)90043-x. [DOI] [PubMed] [Google Scholar]
  39. Lin L., Bitner R., Edlin G. Increased reproductive fitness of Escherichia coli lambda lysogens. J Virol. 1977 Feb;21(2):554–559. doi: 10.1128/jvi.21.2.554-559.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. MOSER H. Structure and dynamics of bacterial populations maintained in the chemostat. Cold Spring Harb Symp Quant Biol. 1957;22:121–137. doi: 10.1101/sqb.1957.022.01.015. [DOI] [PubMed] [Google Scholar]
  41. MUNSON R. J., BRIDGES B. A. 'TAKE-OVER'--AN UNUSUAL SELECTION PROCESS IN STEADY-STATE CULTURES OF ESCHERICHIA COLI. J Gen Microbiol. 1964 Dec;37:411–418. doi: 10.1099/00221287-37-3-411. [DOI] [PubMed] [Google Scholar]
  42. Martin G. A., Hempfling W. P. A method for the regulation of microbial population density during continuous culture at high growth rates. Arch Microbiol. 1976 Feb;107(1):41–47. doi: 10.1007/BF00427865. [DOI] [PubMed] [Google Scholar]
  43. Maruyama T., Kimura M. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6710–6714. doi: 10.1073/pnas.77.11.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mason T. G., Richardson G. Escherichia coli and the human gut: some ecological considerations. J Appl Bacteriol. 1981 Aug;51(1):1–16. doi: 10.1111/j.1365-2672.1981.tb00903.x. [DOI] [PubMed] [Google Scholar]
  45. Mason T. G., Richardson G. Observations on the in vivo and in vitro competition between strains of Escherichia coli isolated from the human gut. J Appl Bacteriol. 1982 Aug;53(1):19–27. doi: 10.1111/j.1365-2672.1982.tb04730.x. [DOI] [PubMed] [Google Scholar]
  46. Mason T. G., Slater J. H. Competition between an Escherichia coli tyrosine auxotroph and a prototrophic revertant in glucose- and tyrosine-limited chemostats. Antonie Van Leeuwenhoek. 1979;45(2):253–263. doi: 10.1007/BF00418588. [DOI] [PubMed] [Google Scholar]
  47. Matz K., Schmandt M., Gussin G. N. The rex gene of bacteriophage lambda is really two genes. Genetics. 1982 Nov;102(3):319–327. doi: 10.1093/genetics/102.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. McDonald D J. Segregation of the Selective Advantage Obtained through Orthoselection in Escherichia Coli. Genetics. 1955 Nov;40(6):937–950. doi: 10.1093/genetics/40.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Meacock P. A., Cohen S. N. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell. 1980 Jun;20(2):529–542. doi: 10.1016/0092-8674(80)90639-x. [DOI] [PubMed] [Google Scholar]
  50. Milkman R. Electrophoretic variation in Escherichia coli from natural sources. Science. 1973 Dec 7;182(4116):1024–1026. doi: 10.1126/science.182.4116.1024. [DOI] [PubMed] [Google Scholar]
  51. NOVICK A., HORIUCHI T. Hyper-production of beta-galactosidase by Escherichia coli bacteria. Cold Spring Harb Symp Quant Biol. 1961;26:239–245. doi: 10.1101/sqb.1961.026.01.029. [DOI] [PubMed] [Google Scholar]
  52. NOVICK A., SZILARD L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A. 1950 Dec;36(12):708–719. doi: 10.1073/pnas.36.12.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Nestmann E. R., Hill R. F. Population changes in continuously growing mutator cultures of Escherichia coli. Genetics. 1973 Apr;73(Suppl):41–44. [PubMed] [Google Scholar]
  54. Paynter M. J., Bungay H. R., 3rd Responses in continuous cultures of lysogenic Escherichia coli following induction. Biotechnol Bioeng. 1970 May;12(3):347–351. doi: 10.1002/bit.260120304. [DOI] [PubMed] [Google Scholar]
  55. Roth M., Noack D. Genetic stability of differentiated functions in Streptomyces hygroscopicus in relation to conditions of continuous culture. J Gen Microbiol. 1982 Jan;128(1):107–114. doi: 10.1099/00221287-128-1-107. [DOI] [PubMed] [Google Scholar]
  56. Weiss R. L., Kukora J. R., Adams J. The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1975 Mar;72(3):794–798. doi: 10.1073/pnas.72.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wouters J. T., van Andel J. G. R-plasmid persistence in Escherichia coli grown in chemostat cultures [proceedings]. Antonie Van Leeuwenhoek. 1979;45(2):317–318. doi: 10.1007/BF00418597. [DOI] [PubMed] [Google Scholar]
  58. Zünd P., Lebek G. Generation time-prolonging R plasmids: correlation between increases in the generation time of Escherichia coli caused by R plasmids and their molecular size. Plasmid. 1980 Jan;3(1):65–69. doi: 10.1016/s0147-619x(80)90034-7. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES