Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARLTROP J. A., GRUBB P. W., HESP B. MECHANISMS FOR OXIDATIVE PHOSPHORYLATION AT THE PYRIDINE NUCLEOTIDE/FLAVOPROTEIN LEVEL. Nature. 1963 Aug 24;199:759–761. doi: 10.1038/199759a0. [DOI] [PubMed] [Google Scholar]
- Chapman A. G., Atkinson D. E. Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast. Adv Microb Physiol. 1977;15:253–306. doi: 10.1016/s0065-2911(08)60318-5. [DOI] [PubMed] [Google Scholar]
- Citri N. Conformational adaptability in enzymes. Adv Enzymol Relat Areas Mol Biol. 1973;37:397–648. doi: 10.1002/9780470122822.ch7. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S., Chiu N. Y. Yeast inorganic pyrophosphatase. 3. Active-site mapping by electrophilic reagents and binding measurements. Biochemistry. 1973 Apr 24;12(9):1676–1682. doi: 10.1021/bi00733a003. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S., Panackal A., Springs B., Hamm D. J. Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry. 1981 Oct 13;20(21):6051–6060. doi: 10.1021/bi00524a021. [DOI] [PubMed] [Google Scholar]
- Coopermann B. S., Chiu N. Y. Yeast inorganic pyrophosphatase. II. Magnetic resonance and steady-state kinetic studies of metal ion and pyrophosphate analog binding. Biochemistry. 1973 Apr 24;12(9):1670–1676. doi: 10.1021/bi00733a002. [DOI] [PubMed] [Google Scholar]
- Ferdinand W. The interpretation of non-hyperbolic rate curves for two-substrate enzymes. A possible mechanism for phosphofructokinase. Biochem J. 1966 Jan;98(1):278–283. doi: 10.1042/bj0980278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillory R. J., Fisher R. R. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores. Biochem J. 1972 Sep;129(2):571–581. [PMC free article] [PubMed] [Google Scholar]
- Hamm D. J., Cooperman B. S. Nuclear magnetic resonance studies of inorganic phosphate binding to yeast inorganic pyrophosphatase. Biochemistry. 1978 Sep 19;17(19):4033–4040. doi: 10.1021/bi00612a025. [DOI] [PubMed] [Google Scholar]
- Heinonen J., Joronen I., Tuokko H. Adaptation of the cells of Escherichia coli to the presence of hydroxyurea increases the level of inorganic pyrophosphatase acttivity. Chem Biol Interact. 1976 Jan;12(1):91–98. doi: 10.1016/0009-2797(76)90070-3. [DOI] [PubMed] [Google Scholar]
- Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 1. Purification and catalytic properties. J Biol Chem. 1966 May 10;241(9):1938–1947. [PubMed] [Google Scholar]
- Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. II. Nature and binding of active substrate and the role of magnesium. J Biol Chem. 1966 May 10;241(9):1948–1955. [PubMed] [Google Scholar]
- KUNITZ M. Crystalline inorganic pyrophosphatase isolated from baker's yeast. J Gen Physiol. 1952 Jan;35(3):423–450. doi: 10.1085/jgp.35.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keister D. L., Minton N. J. Energy-linked reactions in photosynthetic bacteria. VI. Inorganic pyrophosphate-driven ATP synthesis in Rhodospirillum rubrum. Arch Biochem Biophys. 1971 Nov;147(1):330–338. doi: 10.1016/0003-9861(71)90341-9. [DOI] [PubMed] [Google Scholar]
- Keister D. L., Raveed N. J. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum. J Biol Chem. 1974 Oct 25;249(20):6454–6458. [PubMed] [Google Scholar]
- Keister D. L., Yike N. J. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1967 Aug;121(2):415–422. doi: 10.1016/0003-9861(67)90095-1. [DOI] [PubMed] [Google Scholar]
- Keister D. L., Yike N. J. Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum. Biochemistry. 1967 Dec;6(12):3847–3857. doi: 10.1021/bi00864a031. [DOI] [PubMed] [Google Scholar]
- Kent R. B., Guterman S. K. Pyrophosphate inhibition of rho ATPase: a mechanism of coupling to RNA polymerase activity. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3992–3996. doi: 10.1073/pnas.79.13.3992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khandelwal R. L., Kasmani S. A. Studies on in activation and reactivation of homogeneous rabbit liver phosphoprotein phosphatases by inorganic pyorphosphate and divalent cations. Biochim Biophys Acta. 1980;613(1):95–105. doi: 10.1016/0005-2744(80)90196-5. [DOI] [PubMed] [Google Scholar]
- Khandelwal R. L. The regulation of liver phosphoprotein phosphatase by inorganic pyrophosphate and cobalt. Arch Biochem Biophys. 1978 Dec;191(2):764–773. doi: 10.1016/0003-9861(78)90418-6. [DOI] [PubMed] [Google Scholar]
- Klemme J. H., Gest H. Regulation of the cytoplasmic inorganic pyrophosphatase of Rhodospirillum rubrum. Eur J Biochem. 1971 Oct 26;22(4):529–537. doi: 10.1111/j.1432-1033.1971.tb01573.x. [DOI] [PubMed] [Google Scholar]
- Klemme J. H., Gest H. Regulatory properties of an inorganic pyrophosphatase from the photosynthic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1971 Apr;68(4):721–725. doi: 10.1073/pnas.68.4.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemme J. H., Klemme B., Gest H. Catalytic properties and regulatory diversity of inorganic pyrophosphatases from photosynthetic bacteria. J Bacteriol. 1971 Dec;108(3):1122–1128. doi: 10.1128/jb.108.3.1122-1128.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemme J. H. Regulation of intracellular pyrophosphatase-activity and conservation of the phosphoanhydride-energy of inorganic pyrophosphate in microbial metabolism. Z Naturforsch C. 1976 Sep-Oct;31(9-10):544–550. doi: 10.1515/znc-1976-9-1011. [DOI] [PubMed] [Google Scholar]
- Kondrashin A. A., Remennikov V. G., Samuilov V. D., Skulachev V. P. Reconstitution of biological molecular generators of electric current. Inorganic pyrophosphatase. Eur J Biochem. 1980 Dec;113(1):219–222. doi: 10.1111/j.1432-1033.1980.tb06159.x. [DOI] [PubMed] [Google Scholar]
- Kukko E. I., Heinonen J. K. Effect of penicillins on the level of inorganic pyrophosphatase in Escherichia coli K 12. Z Naturforsch C. 1982 May-Jun;37(5-6):542–544. doi: 10.1515/znc-1982-5-630. [DOI] [PubMed] [Google Scholar]
- Lahti R., Heinonen J. Activity changes of inorganic pyrophosphatase of Streptococcus faecalis during batch culture. J Gen Microbiol. 1981 Jul;125(1):185–188. doi: 10.1099/00221287-125-1-185. [DOI] [PubMed] [Google Scholar]
- Lahti R., Heinonen J. Reversible changes in the activity of inorganic pyrophosphatase of Streptococcus faecalis. The effect of compounds containing SH-groups. Acta Chem Scand B. 1981;35(1):33–38. doi: 10.3891/acta.chem.scand.35b-0033. [DOI] [PubMed] [Google Scholar]
- Lahti R., Niemi T. Purification and some properties of inorganic pyrophosphatase from Streptococcus faecalis. J Biochem. 1981 Jul;90(1):79–85. doi: 10.1093/oxfordjournals.jbchem.a133471. [DOI] [PubMed] [Google Scholar]
- Lahti R., Suonpä M. Role of glutathione in the regulation of inorganic pyrophosphatase activity in Streptococcus faecalis. J Gen Microbiol. 1982 May;128(5):1023–1026. doi: 10.1099/00221287-128-5-1023. [DOI] [PubMed] [Google Scholar]
- Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu C. L., Hart N., Peck H. D., Jr Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus desulfotomaculum. Science. 1982 Jul 23;217(4557):363–364. doi: 10.1126/science.217.4557.363. [DOI] [PubMed] [Google Scholar]
- Liu C. L., Peck H. D., Jr Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp. J Bacteriol. 1981 Feb;145(2):966–973. doi: 10.1128/jb.145.2.966-973.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- London W. P., Steck T. L. Kinetics of enzyme reactions with interaction between a substrate and a (metal) modifier. Biochemistry. 1969 Apr;8(4):1767–1779. doi: 10.1021/bi00832a061. [DOI] [PubMed] [Google Scholar]
- MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Mansurova S. E., Shakhov Y. A., Belyakova T. N., Kulaev I. S. Synthesis of inorganic pyrophosphate by animal tissue mitochondria. FEBS Lett. 1975 Jul 15;55(1):94–98. doi: 10.1016/0014-5793(75)80967-7. [DOI] [PubMed] [Google Scholar]
- Mansurova S. E., Shakhov Y. A., Kulaev I. S. Mitochondrial pyrophosphatase is a coupling factor of respiration and pyrophosphate synthesis. FEBS Lett. 1977 Feb 15;74(1):31–34. doi: 10.1016/0014-5793(77)80745-x. [DOI] [PubMed] [Google Scholar]
- Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
- Moe O. A., Butler L. G. Yeast inorganic pyrophosphatase. II. Kinetics of Mg 2+ activation. J Biol Chem. 1972 Nov 25;247(22):7308–7314. [PubMed] [Google Scholar]
- Morita J. I., Yasui T. Purification and some properties of a neutral muscle pyrophosphatase. J Biochem. 1978 Mar;83(3):719–726. doi: 10.1093/oxfordjournals.jbchem.a131965. [DOI] [PubMed] [Google Scholar]
- Neujahr H. Y., Hansson E., Ferm R. Transport of B-vitamins in microorganisms. 8. Comparative studies on membrane bound ATPase(s) obtained from normal and niacin deficient cells of S. faecalis. Acta Chem Scand. 1967;21(1):182–190. doi: 10.3891/acta.chem.scand.21-0182. [DOI] [PubMed] [Google Scholar]
- OGINSKY E. L., RUMBAUGH H. L. A cobalt-activated bacterial pyrophosphatase. J Bacteriol. 1955 Jul;70(1):92–98. doi: 10.1128/jb.70.1.92-98.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peller L. On the free-energy changes in the synthesis and degradation of nucleic acids. Biochemistry. 1976 Jan 13;15(1):141–146. doi: 10.1021/bi00646a021. [DOI] [PubMed] [Google Scholar]
- Piña M. Z., Brunner A., De Sánchez V. C., Piña E. The regulation of myo-inositol-1-phosphate-synthase activity from Neurospora crassa by pyrophosphate and some cations. Biochim Biophys Acta. 1975 Apr 19;384(2):501–507. doi: 10.1016/0005-2744(75)90051-0. [DOI] [PubMed] [Google Scholar]
- ROBBINS E. A., STULBERG M. P., BOYER P. D. The magnesium activation of pyrophosphatase. Arch Biochem Biophys. 1955 Jan;54(1):215–222. doi: 10.1016/0003-9861(55)90024-2. [DOI] [PubMed] [Google Scholar]
- Rapoport T. A., Höhne W. E., Heitmann P., Rapoport S. Binding of ligands to the inorganic pyrophosphatase of bakers' yeast. Eur J Biochem. 1973 Mar 1;33(2):341–347. doi: 10.1111/j.1432-1033.1973.tb02688.x. [DOI] [PubMed] [Google Scholar]
- Rapoport T. A., Höhne W. E., Reich J. G., Heitmann P., Rapoport S. M. A kinetic model for the action of the inorganic pyrophosphatase from bakers' yeast. The activating influence of magnesium ions. Eur J Biochem. 1972 Mar 27;26(2):237–246. doi: 10.1111/j.1432-1033.1972.tb01761.x. [DOI] [PubMed] [Google Scholar]
- Ridlington J. W., Butler L. G. Yeast inorganic pyrophosphatase. I. Binding of pyrophosphate, metal ion, and metal ion-pyrophosphate complexes. J Biol Chem. 1972 Nov 25;247(22):7303–7307. [PubMed] [Google Scholar]
- Ridlington J. W., Yang Y., Butler L. G. Yeast inorganic pyrophosphatase. IV. Purification, quaternary structure, and evidence for strongly bound Mg 2+1 . Arch Biochem Biophys. 1972 Dec;153(2):714–725. doi: 10.1016/0003-9861(72)90390-6. [DOI] [PubMed] [Google Scholar]
- Sawhney S. K., Nicholas D. J. Effects of amino acids, adenine nucleotides and inorganic pyrophosphate on glutamine synthetase from Anabaena cylindrica. Biochim Biophys Acta. 1978 Dec 8;527(2):485–496. doi: 10.1016/0005-2744(78)90362-5. [DOI] [PubMed] [Google Scholar]
- Schreier E., Höhne W. E. Kinetic characterization of inorganic pyrophosphatase from Bacillus stearothermophilus. FEBS Lett. 1978 Jun 1;90(1):93–96. doi: 10.1016/0014-5793(78)80305-6. [DOI] [PubMed] [Google Scholar]
- Springs B., Welsh K. M., Cooperman B. S. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphate equilibration. Biochemistry. 1981 Oct 27;20(22):6384–6391. doi: 10.1021/bi00525a016. [DOI] [PubMed] [Google Scholar]
- Starr P. R., Oginsky E. L. Inorganic pyrophosphatase of Streptococcus faecium F24. Can J Microbiol. 1972 Feb;18(2):183–192. doi: 10.1139/m72-029. [DOI] [PubMed] [Google Scholar]
- Sweeny J. R., Fisher J. R. An alternative to allosterism and cooperativity in the interpretation of enzyme kinetic data. Biochemistry. 1968 Feb;7(2):561–565. doi: 10.1021/bi00842a008. [DOI] [PubMed] [Google Scholar]
- Thuillier L. Purification and kinetic properties of human erythrocyte Mg2+-dependent inorganic pyrophosphatase. Biochim Biophys Acta. 1978 May 11;524(1):198–206. doi: 10.1016/0005-2744(78)90118-3. [DOI] [PubMed] [Google Scholar]
- Tominaga N., Mori T. Purificantion and characterization of inorganic pyrophosphatase from Thiobacillus thiooxidans. J Biochem. 1977 Feb;81(2):477–483. doi: 10.1093/oxfordjournals.jbchem.a131481. [DOI] [PubMed] [Google Scholar]
- Tono H., Kornberg A. Biochemical studies of bacterial sporulation. 3. Inorganic pyrophosphatase of vegetative cells and spores of Bacillus subtilis. J Biol Chem. 1967 May 25;242(10):2375–2382. [PubMed] [Google Scholar]
- Unemoto T., Tanaka M., Hayashi M. Effect of free magnesium and salts on the inorganic pyrophosphatase purified from a slightly halophilic Vibrio alginolyticus. Biochim Biophys Acta. 1973 Dec 19;327(2):490–500. doi: 10.1016/0005-2744(73)90432-4. [DOI] [PubMed] [Google Scholar]
- Veech R. L., Cook G. A., King M. T. Relationship of free cytoplasmic pyrophosphate to liver glucose content and total pyrophosphate to cytoplasmic phosphorylation potential. FEBS Lett. 1980 Aug 25;117 (Suppl):K65–K72. doi: 10.1016/0014-5793(80)80571-0. [DOI] [PubMed] [Google Scholar]
- Volk S. E., Baykov A. A., Duzhenko V. S., Avaeva S. M. Kinetic studies on the interactions of two forms of inorganic pyrophosphatase of heart mitochondria with physiological ligands. Eur J Biochem. 1982 Jun 15;125(1):215–220. doi: 10.1111/j.1432-1033.1982.tb06671.x. [DOI] [PubMed] [Google Scholar]
- WEIBULL C., GREENWALT J. W., LOW H. The hydrolysis of adenosine triphosphate by cell fractions of Bacillus megaterium. I. Localization and general characteristics of the enzymic activities. J Biol Chem. 1962 Mar;237:847–852. [PubMed] [Google Scholar]
- Ware D. A., Postgate J. R. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J Gen Microbiol. 1971 Aug;67(2):145–160. doi: 10.1099/00221287-67-2-145. [DOI] [PubMed] [Google Scholar]
- Ware D., Postgate J. R. Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria. Nature. 1970 Jun 27;226(5252):1250–1251. doi: 10.1038/2261250a0. [DOI] [PubMed] [Google Scholar]
- Wheeler T. J., Lowenstein J. M. Effects of pyrophosphate, triphosphate, and potassium chloride on adenylate deaminase from rat muscle. Biochemistry. 1980 Sep 30;19(20):4564–4567. doi: 10.1021/bi00561a004. [DOI] [PubMed] [Google Scholar]
- Whitehead E. The regulation of enzyme activity and allosteric transition. Prog Biophys Mol Biol. 1970;21:321–397. doi: 10.1016/0079-6107(70)90028-3. [DOI] [PubMed] [Google Scholar]
- Wong S. C., Hall D. C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 3. Molecular weight and physical properties of the enzyme and its subunits. J Biol Chem. 1970 Sep 10;245(17):4335–4345. [PubMed] [Google Scholar]
- Wood H. G., O'brien W. E., Micheales G. Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate-phosphofructikinase and pyrophosphate-acetate kinase and their roles in the metabolism of inorganic pyrophosphate. Adv Enzymol Relat Areas Mol Biol. 1977;45:85–155. doi: 10.1002/9780470122907.ch2. [DOI] [PubMed] [Google Scholar]
- Wood H. G. Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Fed Proc. 1977 Aug;36(9):2197–2206. [PubMed] [Google Scholar]
- Zehavi-Willner T., Kosower E. M., Hunt T., Kosower N. S. Glutathione. V. The effects of the thiol-oxidizing agent diamide on initiation and translation in rabbit reticulocytes. Biochim Biophys Acta. 1971 Jan 1;228(1):245–251. [PubMed] [Google Scholar]
- Zehavi-Willner T., Kosower N. S., Kosower E. M., Hunt T. GSH oxidation and protein synthesis in rabbit reticulocytes. Biochem Biophys Res Commun. 1970 Jul 13;40(1):37–42. doi: 10.1016/0006-291x(70)91042-9. [DOI] [PubMed] [Google Scholar]