Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1983 Jun;47(2):169–178. doi: 10.1128/mr.47.2.169-178.1983

Microbial inorganic pyrophosphatases.

R Lahti
PMCID: PMC281570  PMID: 6135978

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLTROP J. A., GRUBB P. W., HESP B. MECHANISMS FOR OXIDATIVE PHOSPHORYLATION AT THE PYRIDINE NUCLEOTIDE/FLAVOPROTEIN LEVEL. Nature. 1963 Aug 24;199:759–761. doi: 10.1038/199759a0. [DOI] [PubMed] [Google Scholar]
  2. Chapman A. G., Atkinson D. E. Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast. Adv Microb Physiol. 1977;15:253–306. doi: 10.1016/s0065-2911(08)60318-5. [DOI] [PubMed] [Google Scholar]
  3. Citri N. Conformational adaptability in enzymes. Adv Enzymol Relat Areas Mol Biol. 1973;37:397–648. doi: 10.1002/9780470122822.ch7. [DOI] [PubMed] [Google Scholar]
  4. Cooperman B. S., Chiu N. Y. Yeast inorganic pyrophosphatase. 3. Active-site mapping by electrophilic reagents and binding measurements. Biochemistry. 1973 Apr 24;12(9):1676–1682. doi: 10.1021/bi00733a003. [DOI] [PubMed] [Google Scholar]
  5. Cooperman B. S., Panackal A., Springs B., Hamm D. J. Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry. 1981 Oct 13;20(21):6051–6060. doi: 10.1021/bi00524a021. [DOI] [PubMed] [Google Scholar]
  6. Coopermann B. S., Chiu N. Y. Yeast inorganic pyrophosphatase. II. Magnetic resonance and steady-state kinetic studies of metal ion and pyrophosphate analog binding. Biochemistry. 1973 Apr 24;12(9):1670–1676. doi: 10.1021/bi00733a002. [DOI] [PubMed] [Google Scholar]
  7. Ferdinand W. The interpretation of non-hyperbolic rate curves for two-substrate enzymes. A possible mechanism for phosphofructokinase. Biochem J. 1966 Jan;98(1):278–283. doi: 10.1042/bj0980278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guillory R. J., Fisher R. R. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores. Biochem J. 1972 Sep;129(2):571–581. [PMC free article] [PubMed] [Google Scholar]
  9. Hamm D. J., Cooperman B. S. Nuclear magnetic resonance studies of inorganic phosphate binding to yeast inorganic pyrophosphatase. Biochemistry. 1978 Sep 19;17(19):4033–4040. doi: 10.1021/bi00612a025. [DOI] [PubMed] [Google Scholar]
  10. Heinonen J., Joronen I., Tuokko H. Adaptation of the cells of Escherichia coli to the presence of hydroxyurea increases the level of inorganic pyrophosphatase acttivity. Chem Biol Interact. 1976 Jan;12(1):91–98. doi: 10.1016/0009-2797(76)90070-3. [DOI] [PubMed] [Google Scholar]
  11. Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 1. Purification and catalytic properties. J Biol Chem. 1966 May 10;241(9):1938–1947. [PubMed] [Google Scholar]
  12. Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. II. Nature and binding of active substrate and the role of magnesium. J Biol Chem. 1966 May 10;241(9):1948–1955. [PubMed] [Google Scholar]
  13. KUNITZ M. Crystalline inorganic pyrophosphatase isolated from baker's yeast. J Gen Physiol. 1952 Jan;35(3):423–450. doi: 10.1085/jgp.35.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keister D. L., Minton N. J. Energy-linked reactions in photosynthetic bacteria. VI. Inorganic pyrophosphate-driven ATP synthesis in Rhodospirillum rubrum. Arch Biochem Biophys. 1971 Nov;147(1):330–338. doi: 10.1016/0003-9861(71)90341-9. [DOI] [PubMed] [Google Scholar]
  15. Keister D. L., Raveed N. J. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum. J Biol Chem. 1974 Oct 25;249(20):6454–6458. [PubMed] [Google Scholar]
  16. Keister D. L., Yike N. J. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1967 Aug;121(2):415–422. doi: 10.1016/0003-9861(67)90095-1. [DOI] [PubMed] [Google Scholar]
  17. Keister D. L., Yike N. J. Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum. Biochemistry. 1967 Dec;6(12):3847–3857. doi: 10.1021/bi00864a031. [DOI] [PubMed] [Google Scholar]
  18. Kent R. B., Guterman S. K. Pyrophosphate inhibition of rho ATPase: a mechanism of coupling to RNA polymerase activity. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3992–3996. doi: 10.1073/pnas.79.13.3992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Khandelwal R. L., Kasmani S. A. Studies on in activation and reactivation of homogeneous rabbit liver phosphoprotein phosphatases by inorganic pyorphosphate and divalent cations. Biochim Biophys Acta. 1980;613(1):95–105. doi: 10.1016/0005-2744(80)90196-5. [DOI] [PubMed] [Google Scholar]
  20. Khandelwal R. L. The regulation of liver phosphoprotein phosphatase by inorganic pyrophosphate and cobalt. Arch Biochem Biophys. 1978 Dec;191(2):764–773. doi: 10.1016/0003-9861(78)90418-6. [DOI] [PubMed] [Google Scholar]
  21. Klemme J. H., Gest H. Regulation of the cytoplasmic inorganic pyrophosphatase of Rhodospirillum rubrum. Eur J Biochem. 1971 Oct 26;22(4):529–537. doi: 10.1111/j.1432-1033.1971.tb01573.x. [DOI] [PubMed] [Google Scholar]
  22. Klemme J. H., Gest H. Regulatory properties of an inorganic pyrophosphatase from the photosynthic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1971 Apr;68(4):721–725. doi: 10.1073/pnas.68.4.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klemme J. H., Klemme B., Gest H. Catalytic properties and regulatory diversity of inorganic pyrophosphatases from photosynthetic bacteria. J Bacteriol. 1971 Dec;108(3):1122–1128. doi: 10.1128/jb.108.3.1122-1128.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klemme J. H. Regulation of intracellular pyrophosphatase-activity and conservation of the phosphoanhydride-energy of inorganic pyrophosphate in microbial metabolism. Z Naturforsch C. 1976 Sep-Oct;31(9-10):544–550. doi: 10.1515/znc-1976-9-1011. [DOI] [PubMed] [Google Scholar]
  25. Kondrashin A. A., Remennikov V. G., Samuilov V. D., Skulachev V. P. Reconstitution of biological molecular generators of electric current. Inorganic pyrophosphatase. Eur J Biochem. 1980 Dec;113(1):219–222. doi: 10.1111/j.1432-1033.1980.tb06159.x. [DOI] [PubMed] [Google Scholar]
  26. Kukko E. I., Heinonen J. K. Effect of penicillins on the level of inorganic pyrophosphatase in Escherichia coli K 12. Z Naturforsch C. 1982 May-Jun;37(5-6):542–544. doi: 10.1515/znc-1982-5-630. [DOI] [PubMed] [Google Scholar]
  27. Lahti R., Heinonen J. Activity changes of inorganic pyrophosphatase of Streptococcus faecalis during batch culture. J Gen Microbiol. 1981 Jul;125(1):185–188. doi: 10.1099/00221287-125-1-185. [DOI] [PubMed] [Google Scholar]
  28. Lahti R., Heinonen J. Reversible changes in the activity of inorganic pyrophosphatase of Streptococcus faecalis. The effect of compounds containing SH-groups. Acta Chem Scand B. 1981;35(1):33–38. doi: 10.3891/acta.chem.scand.35b-0033. [DOI] [PubMed] [Google Scholar]
  29. Lahti R., Niemi T. Purification and some properties of inorganic pyrophosphatase from Streptococcus faecalis. J Biochem. 1981 Jul;90(1):79–85. doi: 10.1093/oxfordjournals.jbchem.a133471. [DOI] [PubMed] [Google Scholar]
  30. Lahti R., Suonpä M. Role of glutathione in the regulation of inorganic pyrophosphatase activity in Streptococcus faecalis. J Gen Microbiol. 1982 May;128(5):1023–1026. doi: 10.1099/00221287-128-5-1023. [DOI] [PubMed] [Google Scholar]
  31. Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liu C. L., Hart N., Peck H. D., Jr Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus desulfotomaculum. Science. 1982 Jul 23;217(4557):363–364. doi: 10.1126/science.217.4557.363. [DOI] [PubMed] [Google Scholar]
  33. Liu C. L., Peck H. D., Jr Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp. J Bacteriol. 1981 Feb;145(2):966–973. doi: 10.1128/jb.145.2.966-973.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. London W. P., Steck T. L. Kinetics of enzyme reactions with interaction between a substrate and a (metal) modifier. Biochemistry. 1969 Apr;8(4):1767–1779. doi: 10.1021/bi00832a061. [DOI] [PubMed] [Google Scholar]
  35. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  36. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  37. Mansurova S. E., Shakhov Y. A., Belyakova T. N., Kulaev I. S. Synthesis of inorganic pyrophosphate by animal tissue mitochondria. FEBS Lett. 1975 Jul 15;55(1):94–98. doi: 10.1016/0014-5793(75)80967-7. [DOI] [PubMed] [Google Scholar]
  38. Mansurova S. E., Shakhov Y. A., Kulaev I. S. Mitochondrial pyrophosphatase is a coupling factor of respiration and pyrophosphate synthesis. FEBS Lett. 1977 Feb 15;74(1):31–34. doi: 10.1016/0014-5793(77)80745-x. [DOI] [PubMed] [Google Scholar]
  39. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
  40. Moe O. A., Butler L. G. Yeast inorganic pyrophosphatase. II. Kinetics of Mg 2+ activation. J Biol Chem. 1972 Nov 25;247(22):7308–7314. [PubMed] [Google Scholar]
  41. Morita J. I., Yasui T. Purification and some properties of a neutral muscle pyrophosphatase. J Biochem. 1978 Mar;83(3):719–726. doi: 10.1093/oxfordjournals.jbchem.a131965. [DOI] [PubMed] [Google Scholar]
  42. Neujahr H. Y., Hansson E., Ferm R. Transport of B-vitamins in microorganisms. 8. Comparative studies on membrane bound ATPase(s) obtained from normal and niacin deficient cells of S. faecalis. Acta Chem Scand. 1967;21(1):182–190. doi: 10.3891/acta.chem.scand.21-0182. [DOI] [PubMed] [Google Scholar]
  43. OGINSKY E. L., RUMBAUGH H. L. A cobalt-activated bacterial pyrophosphatase. J Bacteriol. 1955 Jul;70(1):92–98. doi: 10.1128/jb.70.1.92-98.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Peller L. On the free-energy changes in the synthesis and degradation of nucleic acids. Biochemistry. 1976 Jan 13;15(1):141–146. doi: 10.1021/bi00646a021. [DOI] [PubMed] [Google Scholar]
  45. Piña M. Z., Brunner A., De Sánchez V. C., Piña E. The regulation of myo-inositol-1-phosphate-synthase activity from Neurospora crassa by pyrophosphate and some cations. Biochim Biophys Acta. 1975 Apr 19;384(2):501–507. doi: 10.1016/0005-2744(75)90051-0. [DOI] [PubMed] [Google Scholar]
  46. ROBBINS E. A., STULBERG M. P., BOYER P. D. The magnesium activation of pyrophosphatase. Arch Biochem Biophys. 1955 Jan;54(1):215–222. doi: 10.1016/0003-9861(55)90024-2. [DOI] [PubMed] [Google Scholar]
  47. Rapoport T. A., Höhne W. E., Heitmann P., Rapoport S. Binding of ligands to the inorganic pyrophosphatase of bakers' yeast. Eur J Biochem. 1973 Mar 1;33(2):341–347. doi: 10.1111/j.1432-1033.1973.tb02688.x. [DOI] [PubMed] [Google Scholar]
  48. Rapoport T. A., Höhne W. E., Reich J. G., Heitmann P., Rapoport S. M. A kinetic model for the action of the inorganic pyrophosphatase from bakers' yeast. The activating influence of magnesium ions. Eur J Biochem. 1972 Mar 27;26(2):237–246. doi: 10.1111/j.1432-1033.1972.tb01761.x. [DOI] [PubMed] [Google Scholar]
  49. Ridlington J. W., Butler L. G. Yeast inorganic pyrophosphatase. I. Binding of pyrophosphate, metal ion, and metal ion-pyrophosphate complexes. J Biol Chem. 1972 Nov 25;247(22):7303–7307. [PubMed] [Google Scholar]
  50. Ridlington J. W., Yang Y., Butler L. G. Yeast inorganic pyrophosphatase. IV. Purification, quaternary structure, and evidence for strongly bound Mg 2+1 . Arch Biochem Biophys. 1972 Dec;153(2):714–725. doi: 10.1016/0003-9861(72)90390-6. [DOI] [PubMed] [Google Scholar]
  51. Sawhney S. K., Nicholas D. J. Effects of amino acids, adenine nucleotides and inorganic pyrophosphate on glutamine synthetase from Anabaena cylindrica. Biochim Biophys Acta. 1978 Dec 8;527(2):485–496. doi: 10.1016/0005-2744(78)90362-5. [DOI] [PubMed] [Google Scholar]
  52. Schreier E., Höhne W. E. Kinetic characterization of inorganic pyrophosphatase from Bacillus stearothermophilus. FEBS Lett. 1978 Jun 1;90(1):93–96. doi: 10.1016/0014-5793(78)80305-6. [DOI] [PubMed] [Google Scholar]
  53. Springs B., Welsh K. M., Cooperman B. S. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphate equilibration. Biochemistry. 1981 Oct 27;20(22):6384–6391. doi: 10.1021/bi00525a016. [DOI] [PubMed] [Google Scholar]
  54. Starr P. R., Oginsky E. L. Inorganic pyrophosphatase of Streptococcus faecium F24. Can J Microbiol. 1972 Feb;18(2):183–192. doi: 10.1139/m72-029. [DOI] [PubMed] [Google Scholar]
  55. Sweeny J. R., Fisher J. R. An alternative to allosterism and cooperativity in the interpretation of enzyme kinetic data. Biochemistry. 1968 Feb;7(2):561–565. doi: 10.1021/bi00842a008. [DOI] [PubMed] [Google Scholar]
  56. Thuillier L. Purification and kinetic properties of human erythrocyte Mg2+-dependent inorganic pyrophosphatase. Biochim Biophys Acta. 1978 May 11;524(1):198–206. doi: 10.1016/0005-2744(78)90118-3. [DOI] [PubMed] [Google Scholar]
  57. Tominaga N., Mori T. Purificantion and characterization of inorganic pyrophosphatase from Thiobacillus thiooxidans. J Biochem. 1977 Feb;81(2):477–483. doi: 10.1093/oxfordjournals.jbchem.a131481. [DOI] [PubMed] [Google Scholar]
  58. Tono H., Kornberg A. Biochemical studies of bacterial sporulation. 3. Inorganic pyrophosphatase of vegetative cells and spores of Bacillus subtilis. J Biol Chem. 1967 May 25;242(10):2375–2382. [PubMed] [Google Scholar]
  59. Unemoto T., Tanaka M., Hayashi M. Effect of free magnesium and salts on the inorganic pyrophosphatase purified from a slightly halophilic Vibrio alginolyticus. Biochim Biophys Acta. 1973 Dec 19;327(2):490–500. doi: 10.1016/0005-2744(73)90432-4. [DOI] [PubMed] [Google Scholar]
  60. Veech R. L., Cook G. A., King M. T. Relationship of free cytoplasmic pyrophosphate to liver glucose content and total pyrophosphate to cytoplasmic phosphorylation potential. FEBS Lett. 1980 Aug 25;117 (Suppl):K65–K72. doi: 10.1016/0014-5793(80)80571-0. [DOI] [PubMed] [Google Scholar]
  61. Volk S. E., Baykov A. A., Duzhenko V. S., Avaeva S. M. Kinetic studies on the interactions of two forms of inorganic pyrophosphatase of heart mitochondria with physiological ligands. Eur J Biochem. 1982 Jun 15;125(1):215–220. doi: 10.1111/j.1432-1033.1982.tb06671.x. [DOI] [PubMed] [Google Scholar]
  62. WEIBULL C., GREENWALT J. W., LOW H. The hydrolysis of adenosine triphosphate by cell fractions of Bacillus megaterium. I. Localization and general characteristics of the enzymic activities. J Biol Chem. 1962 Mar;237:847–852. [PubMed] [Google Scholar]
  63. Ware D. A., Postgate J. R. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J Gen Microbiol. 1971 Aug;67(2):145–160. doi: 10.1099/00221287-67-2-145. [DOI] [PubMed] [Google Scholar]
  64. Ware D., Postgate J. R. Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria. Nature. 1970 Jun 27;226(5252):1250–1251. doi: 10.1038/2261250a0. [DOI] [PubMed] [Google Scholar]
  65. Wheeler T. J., Lowenstein J. M. Effects of pyrophosphate, triphosphate, and potassium chloride on adenylate deaminase from rat muscle. Biochemistry. 1980 Sep 30;19(20):4564–4567. doi: 10.1021/bi00561a004. [DOI] [PubMed] [Google Scholar]
  66. Whitehead E. The regulation of enzyme activity and allosteric transition. Prog Biophys Mol Biol. 1970;21:321–397. doi: 10.1016/0079-6107(70)90028-3. [DOI] [PubMed] [Google Scholar]
  67. Wong S. C., Hall D. C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 3. Molecular weight and physical properties of the enzyme and its subunits. J Biol Chem. 1970 Sep 10;245(17):4335–4345. [PubMed] [Google Scholar]
  68. Wood H. G., O'brien W. E., Micheales G. Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate-phosphofructikinase and pyrophosphate-acetate kinase and their roles in the metabolism of inorganic pyrophosphate. Adv Enzymol Relat Areas Mol Biol. 1977;45:85–155. doi: 10.1002/9780470122907.ch2. [DOI] [PubMed] [Google Scholar]
  69. Wood H. G. Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Fed Proc. 1977 Aug;36(9):2197–2206. [PubMed] [Google Scholar]
  70. Zehavi-Willner T., Kosower E. M., Hunt T., Kosower N. S. Glutathione. V. The effects of the thiol-oxidizing agent diamide on initiation and translation in rabbit reticulocytes. Biochim Biophys Acta. 1971 Jan 1;228(1):245–251. [PubMed] [Google Scholar]
  71. Zehavi-Willner T., Kosower N. S., Kosower E. M., Hunt T. GSH oxidation and protein synthesis in rabbit reticulocytes. Biochem Biophys Res Commun. 1970 Jul 13;40(1):37–42. doi: 10.1016/0006-291x(70)91042-9. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES