Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jul;85(14):5006–5010. doi: 10.1073/pnas.85.14.5006

Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains.

N M Crawford 1, M Smith 1, D Bellissimo 1, R W Davis 1
PMCID: PMC281676  PMID: 3393528

Abstract

The sequence of nitrate reductase (EC 1.6.6.1) mRNA from the plant Arabidopsis thaliana has been determined. A 3.0-kilobase-long cDNA was isolated from a lambda gt10 cDNA library of Arabidopsis leaf poly(A)+ RNA. The cDNA hybridized to a 3.2-kilobase mRNA whose level increased 15-fold in response to treatment of the plant with nitrate. An open reading frame encoding a 917 amino acid protein was found in the sequence. This protein is very similar to tobacco nitrate reductase, being greater than 80% identical within a section of 450 amino acids. By comparing the Arabidopsis protein sequence with other protein sequences, three functional domains were deduced: (i) a molybdenum-pterin-binding domain that is similar to the molybdenum-pterin-binding domain of rat liver sulfite oxidase, (ii) a heme-binding domain that is similar to proteins in the cytochrome b5 superfamily, and (iii) an FAD-binding domain that is similar to NADH-cytochrome b5 reductase.

Full text

PDF
5006

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res. 1981 Jul 10;9(13):3015–3027. doi: 10.1093/nar/9.13.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Back E., Burkhart W., Moyer M., Privalle L., Rothstein S. Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction. Mol Gen Genet. 1988 Apr;212(1):20–26. doi: 10.1007/BF00322440. [DOI] [PubMed] [Google Scholar]
  3. Barber M. J., Solomonson L. P. The role of the essential sulfhydryl group in assimilatory NADH: nitrate reductase of Chlorella. J Biol Chem. 1986 Apr 5;261(10):4562–4567. [PubMed] [Google Scholar]
  4. Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet. 1987 Oct;209(3):552–562. doi: 10.1007/BF00331162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng C. L., Dewdney J., Kleinhofs A., Goodman H. M. Cloning and nitrate induction of nitrate reductase mRNA. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6825–6828. doi: 10.1073/pnas.83.18.6825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crawford N. M., Campbell W. H., Davis R. W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8073–8076. doi: 10.1073/pnas.83.21.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guiard B., Lederer F. Amino acid sequence of the 'b5-like' heme-binding domain from chicken sulfite oxidase. Eur J Biochem. 1979 Oct 15;100(2):441–453. doi: 10.1111/j.1432-1033.1979.tb04187.x. [DOI] [PubMed] [Google Scholar]
  8. Guiard B., Lederer F. The "cytochrome b5 fold": structure of a novel protein superfamily. J Mol Biol. 1979 Dec 15;135(3):639–650. doi: 10.1016/0022-2836(79)90169-4. [DOI] [PubMed] [Google Scholar]
  9. Hackett C. S., Novoa W. B., Ozols J., Strittmatter P. Identification of the essential cysteine residue of NADH-cytochrome b5 reductase. J Biol Chem. 1986 Jul 25;261(21):9854–9857. [PubMed] [Google Scholar]
  10. Johnson J. L., Rajagopalan K. V. Tryptic cleavage of rat liver sulfite oxidase. Isolation and characterization of molybdenum and heme domains. J Biol Chem. 1977 Mar 25;252(6):2017–2025. [PubMed] [Google Scholar]
  11. Lederer F., Cortial S., Becam A. M., Haumont P. Y., Perez L. Complete amino acid sequence of flavocytochrome b2 from baker's yeast. Eur J Biochem. 1985 Oct 15;152(2):419–428. doi: 10.1111/j.1432-1033.1985.tb09213.x. [DOI] [PubMed] [Google Scholar]
  12. Lederer F., Ghrir R., Guiard B., Cortial S., Ito A. Two homologous cytochromes b5 in a single cell. Eur J Biochem. 1983 Apr 15;132(1):95–102. doi: 10.1111/j.1432-1033.1983.tb07330.x. [DOI] [PubMed] [Google Scholar]
  13. Lê K. H., Lederer F. On the presence of a heme-binding domain homologous to cytochrome b(5) in Neurospora crassa assimilatory nitrate reductase. EMBO J. 1983;2(11):1909–1914. doi: 10.1002/j.1460-2075.1983.tb01678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyerowitz E. M., Pruitt R. E. Arabidopsis thaliana and Plant Molecular Genetics. Science. 1985 Sep 20;229(4719):1214–1218. doi: 10.1126/science.229.4719.1214. [DOI] [PubMed] [Google Scholar]
  15. Nóbrega F. G., Ozols J. Amino acid sequences of tryptic peptides of cytochromes b5 from microsomes of human, monkey, porcine, and chicken liver. J Biol Chem. 1971 Mar 25;246(6):1706–1717. [PubMed] [Google Scholar]
  16. Ozols J., Gerard C., Nobrega F. G. Proteolytic cleavage of horse liver cytochrome b5. Primary structure of the heme-containing moiety. J Biol Chem. 1976 Nov 10;251(21):6767–6774. [PubMed] [Google Scholar]
  17. Ozols J., Korza G., Heinemann F. S., Hediger M. A., Strittmatter P. Complete amino acid sequence of steer liver microsomal NADH-cytochrome b5 reductase. J Biol Chem. 1985 Oct 5;260(22):11953–11961. [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Solomonson L. P., Barber M. J., Robbins A. P., Oaks A. Functional domains of assimilatory NADH:nitrate reductase from Chlorella. J Biol Chem. 1986 Aug 25;261(24):11290–11294. [PubMed] [Google Scholar]
  20. Tsugita A., Kobayashi M., Tani S., Kyo S., Rashid M. A. Comparative study of the primary structures of cytochrome b5 from four species. Proc Natl Acad Sci U S A. 1970 Sep;67(1):442–447. doi: 10.1073/pnas.67.1.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yubisui T., Miyata T., Iwanaga S., Tamura M., Yoshida S., Takeshita M., Nakajima H. Amino acid sequence of NADH-cytochrome b5 reductase of human erythrocytes. J Biochem. 1984 Aug;96(2):579–582. doi: 10.1093/oxfordjournals.jbchem.a134871. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES