Abstract
Two-dimensional 1H NMR investigations were used to locate elements of regular secondary structure in the human complement protein C3a (the des-Arg77 derivative) in solution. The results were compared to a refined crystal structure based on the 3.2-A resolution structure of des-Arg77-C3a [Huber, R., Scholze, H., Paques, E. P. & Deisenhofer, J. (1980) Hoppe-Seyler's Z. Physiol. Chem. 361, 1389-1399]. In excellent agreement with the x-ray data, helices occur in the regions of residues 17-28 and 36-43 in solution. In contrast to the x-ray data, where a third long helix was found from residue 47 to residue 73, the solution data show a shorter helix in the region from residue 47 to residue 66, followed by a transition range at positions 67-70, leading into a six-residue carboxyl-terminal peptide in dynamic random coil conformation. At the amino terminus, a well-defined helix is observed in solution for the residues 8-15 region, which, like the carboxyl terminus, gradually changes to dynamic random coil toward the end of the polypeptide chain. This is at variance with the x-ray data as well, in which residues 13-15 are nonhelical and no electron density could be assigned to the first 12 residues due to disorder.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Billeter M., Braun W., Wüthrich K. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distances and statistical analysis of proton-proton distances in single crystal protein conformations. J Mol Biol. 1982 Mar 5;155(3):321–346. doi: 10.1016/0022-2836(82)90008-0. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
- Greer J. Comparative structural anatomy of the complement anaphylatoxin proteins C3a, C4a and C5a. Enzyme. 1986;36(1-2):150–163. doi: 10.1159/000469285. [DOI] [PubMed] [Google Scholar]
- Greer J. Model structure for the inflammatory protein C5a. Science. 1985 May 31;228(4703):1055–1060. doi: 10.1126/science.3992245. [DOI] [PubMed] [Google Scholar]
- Huber R., Scholze H., Pâques E. P., Deisenhofer J. Crystal structure analysis and molecular model of human C3a anaphylatoxin. Hoppe Seylers Z Physiol Chem. 1980 Sep;361(9):1389–1399. doi: 10.1515/bchm2.1980.361.2.1389. [DOI] [PubMed] [Google Scholar]
- Hugli T. E., Gerard C., Kawahara M., Scheetz M. E., 2nd, Barton R., Briggs S., Koppel G., Russell S. Isolation of three separate anaphylatoxins from complement-activated human serum. Mol Cell Biochem. 1981 Dec 4;41:59–66. doi: 10.1007/BF00225297. [DOI] [PubMed] [Google Scholar]
- Hugli T. E. Human anaphylatoxin (C3a) from the third component of complement. Primary structure. J Biol Chem. 1975 Nov 10;250(21):8293–8301. [PubMed] [Google Scholar]
- Hugli T. E., Morgan W. T., Müller-Eberhard H. J. Circular dichroism of C3a anaphylatoxin. Effects of pH, heat, guanidinium chloride, and mercaptoethanol on conformation and function. J Biol Chem. 1975 Feb 25;250(4):1479–1483. [PubMed] [Google Scholar]
- Hugli T. E. The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. Crit Rev Immunol. 1981 Feb;1(4):321–366. [PubMed] [Google Scholar]
- Lu Z. X., Fok K. F., Erickson B. W., Hugli T. E. Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21-residue peptide. J Biol Chem. 1984 Jun 25;259(12):7367–7370. [PubMed] [Google Scholar]
- Muto Y., Fukumoto Y., Arata Y. Proton nuclear magnetic resonance study of the third component of complement: solution conformation of the carboxyl-terminal segment of C3a fragment. Biochemistry. 1985 Nov 5;24(23):6659–6665. doi: 10.1021/bi00344a054. [DOI] [PubMed] [Google Scholar]
- Muto Y., Fukumoto Y., Arata Y. Solution conformation of carboxy-terminal fragments of the third component of human complement C3: proton nuclear magnetic resonance study of C3a, des-Arg-C3a, and C3a Arg69. J Biochem. 1987 Sep;102(3):635–641. doi: 10.1093/oxfordjournals.jbchem.a122098. [DOI] [PubMed] [Google Scholar]
- Wagner G. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Q Rev Biophys. 1983 Feb;16(1):1–57. doi: 10.1017/s0033583500004911. [DOI] [PubMed] [Google Scholar]
- Wüthrich K., Billeter M., Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984 Dec 15;180(3):715–740. doi: 10.1016/0022-2836(84)90034-2. [DOI] [PubMed] [Google Scholar]
- Wüthrich K., Wider G., Wagner G., Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J Mol Biol. 1982 Mar 5;155(3):311–319. doi: 10.1016/0022-2836(82)90007-9. [DOI] [PubMed] [Google Scholar]
- Zuiderweg E. R., Mollison K. W., Henkin J., Carter G. W. Sequence-specific assignments in the 1H NMR spectrum of the human inflammatory protein C5a. Biochemistry. 1988 May 17;27(10):3568–3580. doi: 10.1021/bi00410a007. [DOI] [PubMed] [Google Scholar]
