Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Aug;85(15):5379–5383. doi: 10.1073/pnas.85.15.5379

Comparative amino acid sequence of fructose-1,6-bisphosphatases: identification of a region unique to the light-regulated chloroplast enzyme.

F Marcus 1, L Moberly 1, S P Latshaw 1
PMCID: PMC281760  PMID: 2840657

Abstract

Chloroplast fructose-1,6-bisphosphatase (Fru-P2-ase) is an essential enzyme in the photosynthetic pathway of carbon dioxide fixation into sugars. The properties of the chloroplast enzyme are clearly distinct from cytosolic gluconeogenic Fru-P2-ases. Light-dependent activation by way of a ferredoxin/thioredoxin system and insensitivity to AMP inhibition are distinctive characteristics of the chloroplast enzyme. However, the chloroplast enzyme shows a high degree of amino acid sequence similarity to gluconeogenic Fru-P2-ases. Sequence data reported for a total of 285 residues (approximately 75% of the structure) of the spinach chloroplast enzyme reveals a 46% amino acid sequence identity with pig kidney Fru-P2-ase. We now report the amino acid sequence of a region consisting of 46 additional residues. This region is located near the middle of the primary structure of the enzyme and it includes a 16-residue insert not present in other Fru-P2-ases. This sequence insert has two cysteines separated by only 4 amino acid residues (Cys-Val-Val-Asn-Val-Cys), a characteristic feature of at least three other enzymes containing redox-active cysteines. It appears likely that this region of chloroplast Fru-P2-ase is involved in light-dependent activation.

Full text

PDF
5379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  2. Buchanan B. B., Schürmann P., Kalberer P. P. Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. Resolution of the system, properties of the alkaline fructose diphosphatase component, and physiological significance of the ferredoxin-linked activation. J Biol Chem. 1971 Oct 10;246(19):5952–5959. [PubMed] [Google Scholar]
  3. Burleigh B. D., Jr, Williams C. H., Jr The isolation and primary structure of a paptide containing the oxidation-reduction active cystine of Escherichia coli lipoamide dehydrogenase. J Biol Chem. 1972 Apr 10;247(7):2077–2082. [PubMed] [Google Scholar]
  4. Edman J. C., Ellis L., Blacher R. W., Roth R. A., Rutter W. J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature. 1985 Sep 19;317(6034):267–270. doi: 10.1038/317267a0. [DOI] [PubMed] [Google Scholar]
  5. Fisher W. K., Thompson E. O. Amino acid sequence studies on sheep liver fructose-bisphosphatase. II. The complete sequence. Aust J Biol Sci. 1983;36(3):235–250. doi: 10.1071/bi9830235. [DOI] [PubMed] [Google Scholar]
  6. Fox B. S., Walsh C. T. Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide. Biochemistry. 1983 Aug 16;22(17):4082–4088. doi: 10.1021/bi00286a014. [DOI] [PubMed] [Google Scholar]
  7. Fullmer C. S. Identification of cysteine-containing peptides in protein digests by high-performance liquid chromatography. Anal Biochem. 1984 Nov 1;142(2):336–339. doi: 10.1016/0003-2697(84)90473-1. [DOI] [PubMed] [Google Scholar]
  8. Harrsch P. B., Kim Y., Fox J. L., Marcus F. Amino acid sequence similarity between spinach chloroplast and mammalian gluconeogenic fructose-1,6-bisphosphatase. Biochem Biophys Res Commun. 1985 Dec 17;133(2):520–526. doi: 10.1016/0006-291x(85)90937-4. [DOI] [PubMed] [Google Scholar]
  9. Hög J. O., Jörnvall H., Holmgren A., Carlquist M., Persson M. The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol. Eur J Biochem. 1983 Oct 17;136(1):223–232. doi: 10.1111/j.1432-1033.1983.tb07730.x. [DOI] [PubMed] [Google Scholar]
  10. Kelly G. J., Zimmermann G., Latzko E. Fructose-bisphosphatase from spinach leaf chloroplast and cytoplasm. Methods Enzymol. 1982;90(Pt E):371–378. doi: 10.1016/s0076-6879(82)90158-6. [DOI] [PubMed] [Google Scholar]
  11. Lin A. N., Ashley G. W., Stubbe J. Location of the redox-active thiols of ribonucleotide reductase: sequence similarity between the Escherichia coli and Lactobacillus leichmannii enzymes. Biochemistry. 1987 Nov 3;26(22):6905–6909. doi: 10.1021/bi00396a006. [DOI] [PubMed] [Google Scholar]
  12. Lockridge O., Adkins S., La Du B. N. Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem. 1987 Sep 25;262(27):12945–12952. [PubMed] [Google Scholar]
  13. Marcus F., Edelstein I., Reardon I., Heinrikson R. L. Complete amino acid sequence of pig kidney fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7161–7165. doi: 10.1073/pnas.79.23.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marcus F., Gontero B., Harrsch P. B., Rittenhouse J. Amino acid sequence homology among fructose-1,6-bisphosphatases. Biochem Biophys Res Commun. 1986 Mar 13;135(2):374–381. doi: 10.1016/0006-291x(86)90005-7. [DOI] [PubMed] [Google Scholar]
  15. Marcus F., Harrsch P. B., Moberly L., Edelstein I., Latshaw S. P. Spinach chloroplast fructose-1,6-bisphosphatase: identification of the subtilisin-sensitive region and of conserved histidines. Biochemistry. 1987 Nov 3;26(22):7029–7035. doi: 10.1021/bi00396a026. [DOI] [PubMed] [Google Scholar]
  16. Martínez J., Cid H. A model for the structure of fructose-1,6-bisphosphatase from pig kidney. Arch Biol Med Exp (Santiago) 1986 Jan;19(1):77–83. [PubMed] [Google Scholar]
  17. Porter M. A., Stringer C. D., Hartman F. C. Characterization of the regulatory thioredoxin site of phosphoribulokinase. J Biol Chem. 1988 Jan 5;263(1):123–129. [PubMed] [Google Scholar]
  18. Pradel J., Soulié J. M., Buc J., Meunier J. C., Ricard J. On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle. Eur J Biochem. 1981 Jan;113(3):507–511. doi: 10.1111/j.1432-1033.1981.tb05092.x. [DOI] [PubMed] [Google Scholar]
  19. Preiss J., Biggs M. L., Greenberg E. The effect of magnesium ion concentration on the pH optimum of the spinach leaf alkaline fructose diphosphatase. J Biol Chem. 1967 May 10;242(9):2292–2294. [PubMed] [Google Scholar]
  20. Rogers D. T., Hiller E., Mitsock L., Orr E. Characterization of the gene for fructose-1,6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sequence, protein homology, and expression during growth on glucose. J Biol Chem. 1988 May 5;263(13):6051–6057. [PubMed] [Google Scholar]
  21. Ronchi S., Williams C. H., Jr The isolation and primary structure of a peptide containing the oxidation-reduction active cystine of Escherichia coli thioredoxin reductase. J Biol Chem. 1972 Apr 10;247(7):2083–2086. [PubMed] [Google Scholar]
  22. Seaton B. A., Campbell R. L., Petsko G. A., Rose D. R., Edelstein I., Marcus F. Preliminary X-ray crystallographic studies of pig kidney fructose-1,6-bisphosphatase. J Biol Chem. 1984 Jul 25;259(14):8915–8916. [PubMed] [Google Scholar]
  23. Tejwani G. A. Regulation of fructose-bisphosphatase activity. Adv Enzymol Relat Areas Mol Biol. 1983;54:121–194. doi: 10.1002/9780470122990.ch3. [DOI] [PubMed] [Google Scholar]
  24. Untucht-Grau R., Schirmer R. H., Schirmer I., Krauth-Siegel R. L. Glutathione reductase from human erythrocytes: amino-acid sequence of the structurally known FAD-binding domain. Eur J Biochem. 1981 Nov;120(2):407–419. doi: 10.1111/j.1432-1033.1981.tb05718.x. [DOI] [PubMed] [Google Scholar]
  25. Xu G. J., Datta A. G., Singh V. N., Suda H., Pontremoli S., Horecker B. L. Rabbit liver fructose 1,6-bisphosphatase: labeling of the active and allosteric sites with pyridoxal 5-phosphate and sequence of a nonapeptide from the active site. Arch Biochem Biophys. 1981 Aug;210(1):98–103. doi: 10.1016/0003-9861(81)90168-5. [DOI] [PubMed] [Google Scholar]
  26. Zimmermann G., Kelly G. J., Latzko E. Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem. 1976 Nov 15;70(2):361–367. doi: 10.1111/j.1432-1033.1976.tb11025.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES