Abstract
The cytosolic calcium (Ca2+i) response to angiotensin II (Ang II) was examined in single rat zona glomerulosa cells by monitoring fura-2 fluorescence with microspectrofluorimetry. Ang II concentrations ranged from 5 X 10(-12) to 5 X 10(-8) M. The mean peak Ca2+i increase was similar at all Ang II concentrations (205 +/- 11 nM), with a significant difference (P less than 0.05) found only between 5 X 10(-12) M (151 +/- 16 nM) and 5 X 10(-9) M (236 +/- 24 nM). Striking differences over the range of Ang II concentrations were found in the Ca2+i response kinetics. A dose-dependent delay of the onset of the Ca2+i response was observed ranging from 2.6 +/- 0.3 sec at 5 X 10(-8) M to 181 +/- 27 sec at 5 X 10(-12) M Ang II. After the delay, cells typically responded with an abrupt increase in Ca2+i, complete within 15 sec. At low Ang II concentrations (5 X 10(-11) and 5 X 10(-12) M), a complex response was often observed consisting of Ca2+i oscillations. Higher Ang II concentrations gave some evidence of Ca2+i oscillation, especially at 5 X 10(-10) M where oscillations appeared fused. Above 5 X 10(-10) M Ang II, the initial Ca2+i increase decayed to an apparent steady-state value 38-40% of the peak response within 5 min; 5 X 10(-10) M Ang II produced a smaller decline to 63% of the initial Ca2+i increase. In contrast to cell population studies, assessment of individual glomerulosa cells demonstrates (i) a dose-dependent delay prior to a rapid increase in Ca2+i; (ii) a similar peak increase at most Ang II concentrations; (iii) greater sensitivity of the Ca2+i response; and (iv) a complex oscillating Ca2+i response in the physiological range of Ang II.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balla T., Guillemette G., Baukal A. J., Catt K. J. Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem. 1987 Jul 25;262(21):9952–9955. [PubMed] [Google Scholar]
- Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
- Braley L. M., Menachery A. I., Brown E. M., Williams G. H. Comparative effect of angiotensin II, potassium, adrenocorticotropin, and cyclic adenosine 3',5'-monophosphate on cytosolic calcium in rat adrenal cells. Endocrinology. 1986 Sep;119(3):1010–1019. doi: 10.1210/endo-119-3-1010. [DOI] [PubMed] [Google Scholar]
- Braley L. M., Williams G. H. Rat adrenal cell sensitivity to angiotensin II, alpha-1-24-ACTH, and potassium: a comparative study. Am J Physiol. 1977 Nov;233(5):E402–E406. doi: 10.1152/ajpendo.1977.233.5.E402. [DOI] [PubMed] [Google Scholar]
- Braley L., Menachery A., Brown E., Williams G. The effects of extracellular K+ and angiotensin II on cytosolic Ca++ and steroidogenesis in adrenal glomerulosa cells. Biochem Biophys Res Commun. 1984 Sep 17;123(2):810–815. doi: 10.1016/0006-291x(84)90302-4. [DOI] [PubMed] [Google Scholar]
- Capponi A. M., Lew P. D., Jornot L., Vallotton M. B. Correlation between cytosolic free Ca2+ and aldosterone production in bovine adrenal glomerulosa cells. Evidence for a difference in the mode of action of angiotensin II and potassium. J Biol Chem. 1984 Jul 25;259(14):8863–8869. [PubMed] [Google Scholar]
- Choi D. W., Fischbach G. D. GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol. 1981 Apr;45(4):605–620. doi: 10.1152/jn.1981.45.4.605. [DOI] [PubMed] [Google Scholar]
- Connor J. A., Cornwall M. C., Williams G. H. Spatially resolved cytosolic calcium response to angiotensin II and potassium in rat glomerulosa cells measured by digital imaging techniques. J Biol Chem. 1987 Feb 25;262(6):2919–2927. [PubMed] [Google Scholar]
- Elliott M. E., Siegel F. L., Hadjokas N. E., Goodfriend T. L. Angiotensin effects on calcium and steroidogenesis in adrenal glomerulosa cells. Endocrinology. 1985 Mar;116(3):1051–1059. doi: 10.1210/endo-116-3-1051. [DOI] [PubMed] [Google Scholar]
- Farese R. V., Larson R. E., Davis J. S. Rapid effects of angiotensin-II on polyphosphoinositide metabolism in the rat adrenal glomerulosa. Endocrinology. 1984 Jan;114(1):302–304. doi: 10.1210/endo-114-1-302. [DOI] [PubMed] [Google Scholar]
- Graf P., vom Dahl S., Sies H. Sustained oscillations in extracellular calcium concentrations upon hormonal stimulation of perfused rat liver. Biochem J. 1987 Feb 1;241(3):933–936. doi: 10.1042/bj2410933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima I., Kojima K., Kreutter D., Rasmussen H. The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem. 1984 Dec 10;259(23):14448–14457. [PubMed] [Google Scholar]
- Kojima I., Kojima K., Rasmussen H. Characteristics of angiotensin II-, K+- and ACTH-induced calcium influx in adrenal glomerulosa cells. Evidence that angiotensin II, K+, and ACTH may open a common calcium channel. J Biol Chem. 1985 Aug 5;260(16):9171–9176. [PubMed] [Google Scholar]
- Kojima I., Ogata E. Direct demonstration of adrenocorticotropin-induced changes in cytoplasmic free calcium with aequorin in adrenal glomerulosa cell. J Biol Chem. 1986 Jul 25;261(21):9832–9838. [PubMed] [Google Scholar]
- Kojima I., Shibata H., Ogata E. Time-dependent restoration of the trigger pool of calcium after termination of angiotensin II action in adrenal glomerulosa cells. J Biol Chem. 1987 Apr 5;262(10):4557–4563. [PubMed] [Google Scholar]
- Nasi E., Tillotson D. The rate of diffusion of Ca2+ and Ba2+ in a nerve cell body. Biophys J. 1985 May;47(5):735–738. doi: 10.1016/S0006-3495(85)83972-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker I., Miledi R. Injection of inositol 1,3,4,5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium. Proc R Soc Lond B Biol Sci. 1987 Oct 22;232(1266):59–70. doi: 10.1098/rspb.1987.0061. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Cornwall M. C., Williams G. H. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology. 1987 Apr;120(4):1581–1589. doi: 10.1210/endo-120-4-1581. [DOI] [PubMed] [Google Scholar]
- Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
- Rossier M. F., Krause K. H., Lew P. D., Capponi A. M., Vallotton M. B. Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. Effects of sodium and inositol 1,4,5-trisphosphate. J Biol Chem. 1987 Mar 25;262(9):4053–4058. [PubMed] [Google Scholar]
- Schiebinger R. J., Braley L. M., Menachery A., Williams G. H. Unique calcium dependencies of the activating mechanism of the early and late aldosterone biosynthetic pathways in the rat. J Endocrinol. 1986 Aug;110(2):315–325. doi: 10.1677/joe.0.1100315. [DOI] [PubMed] [Google Scholar]
- Tait J. F., Tait S. A., Gould R. P., Mee M. S. The properties of adrenal zona glomerulosa cells after purification by gravitational sedimentation. Proc R Soc Lond B Biol Sci. 1974 Feb 26;185(1081):375–407. doi: 10.1098/rspb.1974.0025. [DOI] [PubMed] [Google Scholar]
- Woods N. M., Cuthbertson K. S., Cobbold P. H. Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium. 1987 Feb;8(1):79–100. doi: 10.1016/0143-4160(87)90038-8. [DOI] [PubMed] [Google Scholar]