Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Aug;85(16):6092–6096. doi: 10.1073/pnas.85.16.6092

Anti-idiotypic antibodies that react with microtubule-associated proteins are present in the sera of rabbits immunized with synthetic peptides from tubulin's regulatory domain.

C I Rivas 1, J C Vera 1, R B Maccioni 1
PMCID: PMC281911  PMID: 3413077

Abstract

A fundamental question in microtubule research is how the interactions of tubulin subunits with microtubule-associated proteins (MAPs) are controlled. The answer should provide insight into the regulation of the cellular processes in which microtubules are implicated. Previous work demonstrated the interaction of MAPs with a 4-kDa C-terminal domain of tubulin alpha and beta subunits. Synthetic peptides from the variable region of the 4-kDa C-terminal moiety of tubulin subunits, alpha-(430-441) and beta-(422-434), bind to MAP-2 and to the MAP tau, and a preferential interaction of the beta peptide is observed. To define the regulatory significance of the substructure of the C-terminal tubulin domain, we produced rabbit antisera against these MAP-interacting peptides. We found that these antisera contained not only antibodies to the original synthetic peptides but also antibodies to MAPs. Here, we report that these antibodies, which react with MAP-1, MAP-2, and tau, appear to be a population of anti-idiotypic antibodies directed to the anti-peptide antibodies. They can inhibit MAP-induced tubulin assembly into microtubules in vitro, and the addition of MAPs overcomes the inhibition. The recognition by these anti-idiotypic antibodies of the tubulin-binding domain on MAPs provides unequivocal evidence that the tubulin region defined by the synthetic peptides is directly involved in the interaction with MAPs.

Full text

PDF
6092

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball E. H. Quantitation of proteins by elution of Coomassie brilliant blue R from stained bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem. 1986 May 15;155(1):23–27. doi: 10.1016/0003-2697(86)90218-6. [DOI] [PubMed] [Google Scholar]
  2. Batteiger B., Newhall W. J., 5th, Jones R. B. The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods. 1982 Dec 30;55(3):297–307. doi: 10.1016/0022-1759(82)90089-8. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharyya B., Sackett D. L., Wolff J. Tubulin, hybrid dimers, and tubulin S. Stepwise charge reduction and polymerization. J Biol Chem. 1985 Aug 25;260(18):10208–10216. [PubMed] [Google Scholar]
  4. Blose S. H., Meltzer D. I., Feramisco J. R. 10-nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin. J Cell Biol. 1984 Mar;98(3):847–858. doi: 10.1083/jcb.98.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breitling F., Little M. Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A and DM1B. J Mol Biol. 1986 May 20;189(2):367–370. doi: 10.1016/0022-2836(86)90517-6. [DOI] [PubMed] [Google Scholar]
  6. Cleveland W. L., Wassermann N. H., Sarangarajan R., Penn A. S., Erlanger B. F. Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto-anti-idiotypic mechanism. Nature. 1983 Sep 1;305(5929):56–57. doi: 10.1038/305056a0. [DOI] [PubMed] [Google Scholar]
  7. Füchtbauer A., Herrmann M., Mandelkow E. M., Jockusch B. M. Disruption of microtubules in living cells and cell models by high affinity antibodies to beta-tubulin. EMBO J. 1985 Nov;4(11):2807–2814. doi: 10.1002/j.1460-2075.1985.tb04007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol. 1974 Nov 15;89(4):737–755. doi: 10.1016/0022-2836(74)90048-5. [DOI] [PubMed] [Google Scholar]
  9. Gottlieb R. A., Murphy D. B. Analysis of the microtubule-binding domain of MAP-2. J Cell Biol. 1985 Nov;101(5 Pt 1):1782–1789. doi: 10.1083/jcb.101.5.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guillet J. G., Kaveri S. V., Durieu O., Delavier C., Hoebeke J., Strosberg A. D. beta-Adrenergic agonist activity of a monoclonal anti-idiotypic antibody. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1781–1784. doi: 10.1073/pnas.82.6.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herlyn D., Ross A. H., Koprowski H. Anti-idiotypic antibodies bear the internal image of a human tumor antigen. Science. 1986 Apr 4;232(4746):100–102. doi: 10.1126/science.3952496. [DOI] [PubMed] [Google Scholar]
  12. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  13. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Littauer U. Z., Giveon D., Thierauf M., Ginzburg I., Ponstingl H. Common and distinct tubulin binding sites for microtubule-associated proteins. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7162–7166. doi: 10.1073/pnas.83.19.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ludwig D. S., Finkelstein R. A., Karu A. E., Dallas W. S., Ashby E. R., Schoolnik G. K. Anti-idiotypic antibodies as probes of protein active sites: application to cholera toxin subunit B. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3673–3677. doi: 10.1073/pnas.84.11.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maccioni R. B., Cann J. R., Stewart J. M. Interaction of substance P with tubulin. Eur J Biochem. 1986 Jan 15;154(2):427–435. doi: 10.1111/j.1432-1033.1986.tb09415.x. [DOI] [PubMed] [Google Scholar]
  17. Maccioni R. B., Serrano L., Avila J., Cann J. R. Characterization and structural aspects of the enhanced assembly of tubulin after removal of its carboxyl-terminal domain. Eur J Biochem. 1986 Apr 15;156(2):375–381. doi: 10.1111/j.1432-1033.1986.tb09593.x. [DOI] [PubMed] [Google Scholar]
  18. Marasco W. A., Becker E. L. Anti-idiotype as antibody against the formyl peptide chemotaxis receptor of the neutrophil. J Immunol. 1982 Feb;128(2):963–968. [PubMed] [Google Scholar]
  19. Morgan J. L., Holladay C. R., Spooner B. S. Tubulin antibody inhibits in vitro polymerization independently of microtubule-associated proteins. FEBS Lett. 1978 Sep 1;93(1):141–145. doi: 10.1016/0014-5793(78)80823-0. [DOI] [PubMed] [Google Scholar]
  20. Sandoval I. V., Weber K. Guanasone 5'-(alpha,beta-methylene)triphosphate enhances specifically microtubule nucleation and stops the treadmill of tubulin protomers. J Biol Chem. 1980 Jul 25;255(14):6966–6974. [PubMed] [Google Scholar]
  21. Santoro S. A., Lawing W. J., Jr Competition for related but nonidentical binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet adhesive proteins. Cell. 1987 Mar 13;48(5):867–873. doi: 10.1016/0092-8674(87)90083-3. [DOI] [PubMed] [Google Scholar]
  22. Scherson T., Geiger B., Eshhar Z., Littauer U. Z. Mapping of distinct structural domains on microtubule-associated protein 2 by monoclonal antibodies. Eur J Biochem. 1982 Dec 15;129(2):295–302. doi: 10.1111/j.1432-1033.1982.tb07052.x. [DOI] [PubMed] [Google Scholar]
  23. Serrano L., Avila J., Maccioni R. B. Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry. 1984 Sep 25;23(20):4675–4681. doi: 10.1021/bi00315a024. [DOI] [PubMed] [Google Scholar]
  24. Serrano L., de la Torre J., Maccioni R. B., Avila J. Involvement of the carboxyl-terminal domain of tubulin in the regulation of its assembly. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5989–5993. doi: 10.1073/pnas.81.19.5989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suzuki R., Nishi N., Tokura S., Morita F. F-actin-binding synthetic heptapeptide having the amino acid sequence around the SH1 cysteinyl residue of myosin. J Biol Chem. 1987 Aug 25;262(24):11410–11412. [PubMed] [Google Scholar]
  26. Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP 2). Proc Natl Acad Sci U S A. 1980 Jun;77(6):3206–3210. doi: 10.1073/pnas.77.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wehland J., Willingham M. C., Sandoval I. V. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo. J Cell Biol. 1983 Nov;97(5 Pt 1):1467–1475. doi: 10.1083/jcb.97.5.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weisenberg R. C. Kinetic and steady state analysis of microtubule assembly. Ann N Y Acad Sci. 1986;466:543–551. doi: 10.1111/j.1749-6632.1986.tb38431.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES