Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(19):7129–7133. doi: 10.1073/pnas.85.19.7129

Chemical synthesis and enzymatic activity of a 99-residue peptide with a sequence proposed for the human immunodeficiency virus protease.

R F Nutt 1, S F Brady 1, P L Darke 1, T M Ciccarone 1, C D Colton 1, E M Nutt 1, J A Rodkey 1, C D Bennett 1, L H Waxman 1, I S Sigal 1, et al.
PMCID: PMC282137  PMID: 3050988

Abstract

Retroviral proteins, including those from the human immunodeficiency virus (HIV), are synthesized as polyprotein precursors that require proteolytic cleavage to yield the mature viral proteins. A 99-residue polypeptide, encoded by the 5' end of the pol gene, has been proposed as the processing protease of HIV. The chemical synthesis of the 99-residue peptide was carried out by the solid-phase method, and the isolated product was found to exhibit specific proteolytic activity upon folding under reducing conditions. Upon size-exclusion chromatography, enzymatic activity was eluted at a point consistent with a dimeric molecular size. Specificity was demonstrated by the cleavage of the natural substrate HIV gag p55 into gag p24 and gag p17, as well as cleavage of small peptide substrates representing processing sites of HIV fusion proteins. The proteolytic action of the synthetic product could be inhibited by pepstatin, an aspartic protease inhibitor.

Full text

PDF
7129

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barany G., Kneib-Cordonier N., Mullen D. G. Solid-phase peptide synthesis: a silver anniversary report. Int J Pept Protein Res. 1987 Dec;30(6):705–739. doi: 10.1111/j.1399-3011.1987.tb03385.x. [DOI] [PubMed] [Google Scholar]
  2. Crawford S., Goff S. P. A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. J Virol. 1985 Mar;53(3):899–907. doi: 10.1128/jvi.53.3.899-907.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Debouck C., Gorniak J. G., Strickler J. E., Meek T. D., Metcalf B. W., Rosenberg M. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8903–8906. doi: 10.1073/pnas.84.24.8903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erickson B. W., Merrifield R. B. Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of O-benzyltyrosine to 3-benzyltyrosine. J Am Chem Soc. 1973 May 30;95(11):3750–3756. doi: 10.1021/ja00792a046. [DOI] [PubMed] [Google Scholar]
  5. Gutte B., Merrifield R. B. The total synthesis of an enzyme with ribonuclease A activity. J Am Chem Soc. 1969 Jan 15;91(2):501–502. doi: 10.1021/ja01030a050. [DOI] [PubMed] [Google Scholar]
  6. Katoh I., Yasunaga T., Ikawa Y., Yoshinaka Y. Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature. 1987 Oct 15;329(6140):654–656. doi: 10.1038/329654a0. [DOI] [PubMed] [Google Scholar]
  7. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kramer R. A., Schaber M. D., Skalka A. M., Ganguly K., Wong-Staal F., Reddy E. P. HTLV-III gag protein is processed in yeast cells by the virus pol-protease. Science. 1986 Mar 28;231(4745):1580–1584. doi: 10.1126/science.2420008. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  11. Matsueda G. R. Deprotection of Nin-formyl tryptophan using 1,2-ethanedithiol in liquid hydrogen fluoride. Deformylation upon HF treatment of Merrifield peptidyl-resins. Int J Pept Protein Res. 1982 Jul;20(1):26–34. [PubMed] [Google Scholar]
  12. Mous J., Heimer E. P., Le Grice S. F. Processing protease and reverse transcriptase from human immunodeficiency virus type I polyprotein in Escherichia coli. J Virol. 1988 Apr;62(4):1433–1436. doi: 10.1128/jvi.62.4.1433-1436.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paul A. V., Schultz A., Pincus S. E., Oroszlan S., Wimmer E. Capsid protein VP4 of poliovirus is N-myristoylated. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7827–7831. doi: 10.1073/pnas.84.22.7827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pearl L. H., Taylor W. R. A structural model for the retroviral proteases. Nature. 1987 Sep 24;329(6137):351–354. doi: 10.1038/329351a0. [DOI] [PubMed] [Google Scholar]
  15. Previero A., Coletti-Previero M. A., Cavadore J. C. A reversible chemical modification of the tryptophan residue. Biochim Biophys Acta. 1967 Dec 12;147(3):453–461. doi: 10.1016/0005-2795(67)90005-0. [DOI] [PubMed] [Google Scholar]
  16. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  17. Sabatier J. M., Darbon H., Fourquet P., Rochat H., Van Rietschoten J. Reduction and reoxidation of the neurotoxin II from the scorpion Androctonus australis Hector. Int J Pept Protein Res. 1987 Jul;30(1):125–134. doi: 10.1111/j.1399-3011.1987.tb03320.x. [DOI] [PubMed] [Google Scholar]
  18. Sarin V. K., Kent S. B., Tam J. P., Merrifield R. B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 1981 Oct;117(1):147–157. doi: 10.1016/0003-2697(81)90704-1. [DOI] [PubMed] [Google Scholar]
  19. Savige W. E., Fontana A. Cleavage of the tryptophanyl peptide bond by dimethyl sulfoxide-hydrobromic acid. Methods Enzymol. 1977;47:459–469. doi: 10.1016/0076-6879(77)47046-0. [DOI] [PubMed] [Google Scholar]
  20. Veber D. F., Milkowski J. D., Varga S. L., Denkewalter R. G., Hirschmann R. Acetamidomethyl. A novel thiol protecting group for cysteine. J Am Chem Soc. 1972 Jul 26;94(15):5456–5461. doi: 10.1021/ja00770a600. [DOI] [PubMed] [Google Scholar]
  21. Yajima H., Fujii N. Totally synthetic crystalline ribonuclease A. Biopolymers. 1981 Sep;20(9):1859–1867. doi: 10.1002/bip.1981.360200910. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES